Inverse and Ill-posed Problems

Inverse and Ill-posed Problems PDF Author: Sergey I. Kabanikhin
Publisher: Walter de Gruyter
ISBN: 3110224011
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.

Inverse and Ill-posed Problems

Inverse and Ill-posed Problems PDF Author: Sergey I. Kabanikhin
Publisher: Walter de Gruyter
ISBN: 3110224011
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.

A Taste of Inverse Problems

A Taste of Inverse Problems PDF Author: Martin Hanke
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171

Get Book Here

Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.

Inverse and Ill-posed Problems

Inverse and Ill-posed Problems PDF Author: Heinz W. Engl
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 592

Get Book Here

Book Description
Inverse and Ill-Posed Problems.

An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems PDF Author: Andreas Kirsch
Publisher: Springer Science & Business Media
ISBN: 1441984747
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.

Iterative Regularization Methods for Nonlinear Ill-Posed Problems

Iterative Regularization Methods for Nonlinear Ill-Posed Problems PDF Author: Barbara Kaltenbacher
Publisher: Walter de Gruyter
ISBN: 311020827X
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.

Introduction to Inverse Problems for Differential Equations

Introduction to Inverse Problems for Differential Equations PDF Author: Alemdar Hasanov Hasanoğlu
Publisher: Springer
ISBN: 331962797X
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems PDF Author: Curtis R. Vogel
Publisher: SIAM
ISBN: 0898717574
Category : Mathematics
Languages : en
Pages : 195

Get Book Here

Book Description
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Computational Methods for Applied Inverse Problems

Computational Methods for Applied Inverse Problems PDF Author: Yanfei Wang
Publisher: Walter de Gruyter
ISBN: 3110259052
Category : Mathematics
Languages : en
Pages : 552

Get Book Here

Book Description
Nowadays inverse problems and applications in science and engineering represent an extremely active research field. The subjects are related to mathematics, physics, geophysics, geochemistry, oceanography, geography and remote sensing, astronomy, biomedicine, and other areas of applications. This monograph reports recent advances of inversion theory and recent developments with practical applications in frontiers of sciences, especially inverse design and novel computational methods for inverse problems. The practical applications include inverse scattering, chemistry, molecular spectra data processing, quantitative remote sensing inversion, seismic imaging, oceanography, and astronomical imaging. The book serves as a reference book and readers who do research in applied mathematics, engineering, geophysics, biomedicine, image processing, remote sensing, and environmental science will benefit from the contents since the book incorporates a background of using statistical and non-statistical methods, e.g., regularization and optimization techniques for solving practical inverse problems.

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Numerical Methods for Solving Inverse Problems of Mathematical Physics PDF Author: A. A. Samarskii
Publisher: Walter de Gruyter
ISBN: 3110205793
Category : Mathematics
Languages : en
Pages : 453

Get Book Here

Book Description
The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.

Regularization of Inverse Problems

Regularization of Inverse Problems PDF Author: Heinz Werner Engl
Publisher: Springer Science & Business Media
ISBN: 9780792361404
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.