Ignition Study in Rapid Compression Machine

Ignition Study in Rapid Compression Machine PDF Author: Tairin Hahn
Publisher:
ISBN:
Category :
Languages : en
Pages : 162

Get Book Here

Book Description
As it becomes more and more difficult to find "easy" oil, various alternative fuels are introduced to the markets. These fuels have chemical properties that are different from the traditional gasoline and diesel fuels so that engine efficiency and other engine behaviors may be affected To improve engine efficiency and to identify which alternative fuel is the cleanest fuel solution, it is necessary to compile information about the ignition delay, which governs auto-ignition in spark-ignition (SI), compression-ignition (CI) and homogeneous charge compression-ignition (HCCI) engines. In this study, we measured ignition delay on the Rapid Compression Machine (RCM). RCM is a single-stroke device, which compresses uniform mixtures to engine-like condition. We can interpret from the pressure the detailed heat release process. A comprehensive ignition delay database of toluene/n-heptane mixtures and gasoline/ethanol mixtures was established The data allow us to calculate the auto-ignition behavior in engines. Depending on application the correct choice of alternative fuels may be made.

Ignition Study in Rapid Compression Machine

Ignition Study in Rapid Compression Machine PDF Author: Tairin Hahn
Publisher:
ISBN:
Category :
Languages : en
Pages : 162

Get Book Here

Book Description
As it becomes more and more difficult to find "easy" oil, various alternative fuels are introduced to the markets. These fuels have chemical properties that are different from the traditional gasoline and diesel fuels so that engine efficiency and other engine behaviors may be affected To improve engine efficiency and to identify which alternative fuel is the cleanest fuel solution, it is necessary to compile information about the ignition delay, which governs auto-ignition in spark-ignition (SI), compression-ignition (CI) and homogeneous charge compression-ignition (HCCI) engines. In this study, we measured ignition delay on the Rapid Compression Machine (RCM). RCM is a single-stroke device, which compresses uniform mixtures to engine-like condition. We can interpret from the pressure the detailed heat release process. A comprehensive ignition delay database of toluene/n-heptane mixtures and gasoline/ethanol mixtures was established The data allow us to calculate the auto-ignition behavior in engines. Depending on application the correct choice of alternative fuels may be made.

A High-Pressure Rapid Compression Machine Study of N-Propylbenzene Ignition

A High-Pressure Rapid Compression Machine Study of N-Propylbenzene Ignition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 33

Get Book Here

Book Description


Ignition Delay Study of Next Generation Alternative Jet Fuels in a Rapid Compression Machine

Ignition Delay Study of Next Generation Alternative Jet Fuels in a Rapid Compression Machine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Study of Lubrication Oil Ignition in a Rapid Compression Machine Under Sporadic Pre-ignition Conditions

Study of Lubrication Oil Ignition in a Rapid Compression Machine Under Sporadic Pre-ignition Conditions PDF Author: Morgen Paul Sullivan
Publisher:
ISBN:
Category :
Languages : en
Pages : 97

Get Book Here

Book Description
In recent years, the industry has shifted toward down-sizing and turbo-charging spark ignition (SI) engines in an effort to increase fuel conversion efficiency. However, this has given rise to a destructive phenomenon known as sporadic pre-ignition (SPI). At low cranking speeds and high loads, engines have been observed to knock violently for brief and infrequent intervals. If allowed to continue, these periods of knock will result in a destroyed engine. This study looks at the propensity of lube oil vapor appearing in the cylinder as a cause for this phenomenon. The theory is that a local oil vapor/air mixture pocket may auto-ignite and start a flame in the charge. The pre-ignition would produce extreme knock. A rapid compression machine (RCM) was used to simulate this scenario and determine if oil vapor can cause SPI, and if so, to relate the auto-ignition tendency to the oil properties. The RCM was used to measure the ignition delay of a cloud of oil vapor in a stoichiometric gasoline/air mixture. The ignition delays were then correlated to chemical and physical properties of the oils. Finally, the effect of diluting the mixture was assessed. The results suggest that lube oil is a plausible source of SPI. The oil ignition delay times are sufficiently short to produce extreme pre-ignition consistent with SPI. Further supporting evidence lies in the fact that oil ignition delay times concur with SPI behavior in engines. It was found that the base stock, degradation, and chemical additives all play a role in oil ignition delay times. The results also demonstrate. that dilution significantly slows auto-ignition of the oil.

A Photographic Study of Fuel Spray Ignition in a Rapid Compression Machine

A Photographic Study of Fuel Spray Ignition in a Rapid Compression Machine PDF Author: Arun S. P. Solomon
Publisher:
ISBN:
Category : Spark ignition engines
Languages : en
Pages : 17

Get Book Here

Book Description


Cleaner Combustion

Cleaner Combustion PDF Author: Frédérique Battin-Leclerc
Publisher: Springer Science & Business Media
ISBN: 1447153073
Category : Technology & Engineering
Languages : en
Pages : 657

Get Book Here

Book Description
This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for traditional fuels, but also innovative surrogates, describing the complex chemistry of new environmentally important bio-fuels. Divided into five sections, a broad yet detailed coverage of related research is provided. Beginning with the development of detailed kinetic mechanisms, chapters go on to explore techniques to obtain reliable experimental data, soot and polycyclic aromatic hydrocarbons, mechanism reduction and uncertainty analysis, and elementary reactions. This comprehensive coverage of current research provides a solid foundation for researchers, managers, policy makers and industry operators working in or developing this innovative and globally relevant field.

An Experimental and Modeling Study of Shock Tube and Rapid Compression Machine Ignition of N-Butylbenzene/Air Mixtures

An Experimental and Modeling Study of Shock Tube and Rapid Compression Machine Ignition of N-Butylbenzene/Air Mixtures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Get Book Here

Book Description


Autoignition Study of Ethanol and Heptane in a Rapid Compression Machine

Autoignition Study of Ethanol and Heptane in a Rapid Compression Machine PDF Author: Varun Anthony Davies
Publisher:
ISBN:
Category : Chemical kinetics
Languages : en
Pages : 72

Get Book Here

Book Description
Practical fuels are a complex mixture of thousands of hydrocarbon compounds, making it challenging and difficult to study their combustion behavior. It's generally agreed that in order to study these complex practical fuels a much simpler approach of studying simple fuel surrogates containing limited number of components is more feasible. Ethanol and n-heptane have been studied as primary reference fuels in the surrogate study of gasoline and diesel over the past few decades. The objective of the following thesis has been to study the autoignition characteristics of ethanol and n-heptane and validate chemical kinetic mechanisms. The validation of a chemical kinetic mechanism provides a deeper insight into the combustion behavior of the fuels which can be further used to study advanced combustion concepts. Experiments have been conducted on the rapid compression machine (RCM) and validated against mechanisms from literature study. Rapid compression machines have been primarily used to study chemical kinetics at low to intermediate temperatures and high pressures for their accuracy and reproducibility. For the following study experiments span over a range of temperature (650-1000 K), pressure (10, 15 and 20 bar) and equivalence ratio ([phi]=0.3, 0.5, 1). Experimental data based on the adiabatic volumetric expansion approach have been modeled numerically using the Sandia SENKIN code in conjunction with CHEMKIN. Experiments have been primarily focused on validating kinetic mechanisms at low to intermediate temperatures and elevated pressures. Ignition delay time data from experiments have been deduced based on the pressure and time histories. A brute sensitivity and flux analysis has been performed to reveal the key sensitive reactions and the dominant reaction pathways followed under the present experimental conditions. Improvements have been suggested and discrepancies noted in order to develop a valid chemical kinetic mechanism. Under the present experimental conditions for the study of ethanol, reactions involving hydroperoxyl radicals, namely C2H5OH+HȮ2 and CH3CHO+ HȮ2 as well as the formation of H2O2 from HȮ2 radical and its subsequent decomposition have been found to be sensitive. Based on the following, improvements and developements have been suggested to increase the accuracy and predictability of the mechanisms studied. Ignition delay data from experiments have been compared against those obtained from the mechanism used in the study for n-heptane. Discrepancies have been found in the low temperature region, with the mechanism under predicting the first ignition delay. The causes for the discrepancy have been noted to be due to the NTC behaviour exhibited during the two stage ignition of n-heptane. At low temperatures the reaction pathway proceeded by chain branching mainly due to the ketohydroperoxide species reaction pathway has been analysed. As the temperature of the reaction increases the reaction pathway is dominated by the ȮOH species propagation resulting in the formation of conjugate olefins and [Beta]-decomposition products, a further investigation of which can help improve the predictability of the mechanism.

Fuel Ignition in a Rapid Compression Machine

Fuel Ignition in a Rapid Compression Machine PDF Author: W. W. Haskell
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 5

Get Book Here

Book Description


Experiments on the Effects of Dilution and Fuel Composition on Ignition of Gasoline and Alternative Fuels in a Rapid Compression Machine

Experiments on the Effects of Dilution and Fuel Composition on Ignition of Gasoline and Alternative Fuels in a Rapid Compression Machine PDF Author: Prasanna Chinnathambi
Publisher:
ISBN: 9781687981233
Category : Electronic dissertations
Languages : en
Pages : 262

Get Book Here

Book Description
In the first part of this work, ignition of methane-air mixtures under excess air dilution is studied. When excess air is used in SI engine operation, thermal efficiency is increased due to increase in compression ratio together with reduced pumping and heat loses. However, stable operation with excess air is challenging due to poor flammability of the resulting diluted mixture. Hence in order to achieve stable and complete combustion a turbulent jet ignition (TJI) system is used to improve combustion of lean methane-air mixtures. Various nozzle designs and operating strategies for a TJI system were tested in a rapid compression machine. 10-90% burn duration measurements were useful in assessing the performance of the nozzle designs while the 0-10% burn durations indicated if optimal air-fuel ratio is achieved within the pre-chamber at the time of ignition. The results indicated that distributed-jets TJI system offered faster and stable combustion while the concentrated-jets TJI system offered better dilution tolerance.Knock in a SI engine occurs due to autoignition of the end gas mixture and typically occurs in the negative temperature coefficient (NTC) region of the fuel-air mixture. Dilution of intake charge with cold exhaust recirculation gases (EGR) reduces combustion temperatures and decreases mixture reactivity thereby reducing knocking tendency. This enables optimal spark timings to be used, thereby increasing efficiency of SI engines which would otherwise be knock limited. Effect of cold EGR dilution is studied in the RCM by measuring the autoignition delay times of gasoline and gasoline surrogate mixtures diluted with varying levels of CO2. The autoignition experiments in the RCM were performed using a novel direct test chamber (DTC) charge preparation approach. The DTC approach enabled mixture preparation directly within the combustion chamber and eliminated the need for mixing tanks. Effect of CO2 dilution in retarding the autoignition delay times was more pronounced in the NTC region, while it was weaker in the low temperature and high temperature regions. The retarding effect was found to be dependent on both the octane number and the fuel composition of the gasoline being studied.Finally, the effect of substituting ethanol(biofuel) in gasoline surrogates for up to 40% by volume is studied. Ethanol is an octane booster, but it blends antagonistically with aromatics such as toluene and synergistically with alkanes with respect to the resulting octane number of the blends. In order to study this blending effect, two gasoline surrogates containing only alkanes (PRF), and alkanes with large amounts of toluene (TRF) are blended with varying levels of ethanol. The ignition delay times of the resulting mixtures are measured in a rapid compression machine and kinetic analysis was carried out using numerical simulations. The kinetic analysis revealed that ethanol controlled the final stages of ignition for the PRF blends when more than 10% by volume of ethanol is present. However, in the TRF blends, toluene controlled the ignition until mole fractions of ethanol became higher than the toluene indicating the reason for the antagonistic blending nature. It was found that the RON values of the resulting blends matched the trend of the ignition delay times recorded at 740K and 21 bar compressed conditions. This enables qualitative assessment of the RON numbers for new biofuel blends by measuring their ignition delay times in the RCM.