Hypergeometric Orthogonal Polynomials and Their q-Analogues

Hypergeometric Orthogonal Polynomials and Their q-Analogues PDF Author: Roelof Koekoek
Publisher: Springer Science & Business Media
ISBN: 364205014X
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).

Hypergeometric Orthogonal Polynomials and Their q-Analogues

Hypergeometric Orthogonal Polynomials and Their q-Analogues PDF Author: Roelof Koekoek
Publisher: Springer Science & Business Media
ISBN: 364205014X
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).

Hypergeometric Orthogonal Polynomials and Their q-Analogues

Hypergeometric Orthogonal Polynomials and Their q-Analogues PDF Author: Roelof Koekoek
Publisher: Springer
ISBN: 9783642050503
Category : Mathematics
Languages : en
Pages : 578

Get Book Here

Book Description
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).

Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials

Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials PDF Author: Richard Askey
Publisher: American Mathematical Soc.
ISBN: 0821823213
Category : Jacobi polynomials
Languages : en
Pages : 63

Get Book Here

Book Description
A very general set of orthogonal polynomials in one variable that extends the classical polynomials is a set we called the q-Racah polynomials. In an earlier paper we gave the orthogonality relation for these polynomials when the orthogonality is purely discrete. We now give the weight function in the general case and a number of other properties of these very interesting orthogonal polynomials.

Frontiers In Orthogonal Polynomials And Q-series

Frontiers In Orthogonal Polynomials And Q-series PDF Author: M Zuhair Nashed
Publisher: World Scientific
ISBN: 981322889X
Category : Mathematics
Languages : en
Pages : 577

Get Book Here

Book Description
This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.

Orthogonal Polynomials

Orthogonal Polynomials PDF Author: Gabor Szegš
Publisher: American Mathematical Soc.
ISBN: 0821810235
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.

Classical Orthogonal Polynomials of a Discrete Variable

Classical Orthogonal Polynomials of a Discrete Variable PDF Author: Arnold F. Nikiforov
Publisher: Springer Science & Business Media
ISBN: 3642747485
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
While classical orthogonal polynomials appear as solutions to hypergeometric differential equations, those of a discrete variable emerge as solutions of difference equations of hypergeometric type on lattices. The authors present a concise introduction to this theory, presenting at the same time methods of solving a large class of difference equations. They apply the theory to various problems in scientific computing, probability, queuing theory, coding and information compression. The book is an expanded and revised version of the first edition, published in Russian (Nauka 1985). Students and scientists will find a useful textbook in numerical analysis.

Orthogonal Polynomials

Orthogonal Polynomials PDF Author: Mama Foupouagnigni
Publisher: Springer Nature
ISBN: 3030367444
Category : Mathematics
Languages : en
Pages : 683

Get Book Here

Book Description
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.

Classical and Quantum Orthogonal Polynomials in One Variable

Classical and Quantum Orthogonal Polynomials in One Variable PDF Author: Mourad Ismail
Publisher: Cambridge University Press
ISBN: 9780521782012
Category : Mathematics
Languages : en
Pages : 748

Get Book Here

Book Description
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics PDF Author: James Haglund
Publisher: American Mathematical Soc.
ISBN: 0821844113
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.

Toeplitz Operators and Random Matrices

Toeplitz Operators and Random Matrices PDF Author: Estelle Basor
Publisher: Springer Nature
ISBN: 3031138511
Category : Mathematics
Languages : en
Pages : 606

Get Book Here

Book Description
This volume is dedicated to the memory of Harold Widom (1932–2021), an outstanding mathematician who has enriched mathematics with his ideas and ground breaking work since the 1950s until the present time. It contains a biography of Harold Widom, personal notes written by his former students or colleagues, and also his last, previously unpublished paper on domain walls in a Heisenberg–Ising chain. Widom's most famous contributions were made to Toeplitz operators and random matrices. While his work on random matrices is part of almost all the present-day research activities in this field, his work in Toeplitz operators and matrices was done mainly before 2000 and is therefore described in a contribution devoted to his achievements in just this area. The volume contains 18 invited and refereed research and expository papers on Toeplitz operators and random matrices. These present new results or new perspectives on topics related to Widom's work.