Author: Swanhild Bernstein
Publisher: Springer
ISBN: 3319087711
Category : Mathematics
Languages : en
Pages : 228
Book Description
Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.
Hypercomplex Analysis: New Perspectives and Applications
Author: Swanhild Bernstein
Publisher: Springer
ISBN: 3319087711
Category : Mathematics
Languages : en
Pages : 228
Book Description
Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.
Publisher: Springer
ISBN: 3319087711
Category : Mathematics
Languages : en
Pages : 228
Book Description
Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.
Hypercomplex Analysis and Applications
Author: Irene Sabadini
Publisher: Springer Science & Business Media
ISBN: 3034602464
Category : Mathematics
Languages : en
Pages : 280
Book Description
The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.
Publisher: Springer Science & Business Media
ISBN: 3034602464
Category : Mathematics
Languages : en
Pages : 280
Book Description
The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.
Hypercomplex Numbers
Author: I.L. Kantor
Publisher: Springer
ISBN: 9781461281917
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book deals with various systems of "numbers" that can be constructed by adding "imaginary units" to the real numbers. The complex numbers are a classical example of such a system. One of the most important properties of the complex numbers is given by the identity (1) Izz'l = Izl·Iz'I· It says, roughly, that the absolute value of a product is equal to the product of the absolute values of the factors. If we put z = al + a2i, z' = b+ bi, 1 2 then we can rewrite (1) as The last identity states that "the product of a sum of two squares by a sum of two squares is a sum of two squares. " It is natural to ask if there are similar identities with more than two squares, and how all of them can be described. Already Euler had given an example of an identity with four squares. Later an identity with eight squares was found. But a complete solution of the problem was obtained only at the end of the 19th century. It is substantially true that every identity with n squares is linked to formula (1), except that z and z' no longer denote complex numbers but more general "numbers" where i,j, . . . , I are imaginary units. One of the main themes of this book is the establishing of the connection between identities with n squares and formula (1).
Publisher: Springer
ISBN: 9781461281917
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book deals with various systems of "numbers" that can be constructed by adding "imaginary units" to the real numbers. The complex numbers are a classical example of such a system. One of the most important properties of the complex numbers is given by the identity (1) Izz'l = Izl·Iz'I· It says, roughly, that the absolute value of a product is equal to the product of the absolute values of the factors. If we put z = al + a2i, z' = b+ bi, 1 2 then we can rewrite (1) as The last identity states that "the product of a sum of two squares by a sum of two squares is a sum of two squares. " It is natural to ask if there are similar identities with more than two squares, and how all of them can be described. Already Euler had given an example of an identity with four squares. Later an identity with eight squares was found. But a complete solution of the problem was obtained only at the end of the 19th century. It is substantially true that every identity with n squares is linked to formula (1), except that z and z' no longer denote complex numbers but more general "numbers" where i,j, . . . , I are imaginary units. One of the main themes of this book is the establishing of the connection between identities with n squares and formula (1).
Clifford Algebras and their Applications in Mathematical Physics
Author: Rafał Abłamowicz
Publisher: Springer Science & Business Media
ISBN: 9780817641825
Category : Mathematics
Languages : en
Pages : 500
Book Description
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
Publisher: Springer Science & Business Media
ISBN: 9780817641825
Category : Mathematics
Languages : en
Pages : 500
Book Description
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
Noncommutative Functional Calculus
Author: Prof. Fabrizio Colombo Politecnico di Milano
Publisher: Springer Science & Business Media
ISBN: 3034801106
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book presents a functional calculus for n-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions. Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 3034801106
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book presents a functional calculus for n-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions. Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics.
Hypercomplex Iterations
Author: Yumei Dang
Publisher: World Scientific
ISBN: 9810232969
Category : Mathematics
Languages : en
Pages : 163
Book Description
Includes an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry.
Publisher: World Scientific
ISBN: 9810232969
Category : Mathematics
Languages : en
Pages : 163
Book Description
Includes an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry.
Clifford Analysis and Its Applications
Author: F. Brackx
Publisher: Springer Science & Business Media
ISBN: 9780792370444
Category : Mathematics
Languages : en
Pages : 440
Book Description
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.
Publisher: Springer Science & Business Media
ISBN: 9780792370444
Category : Mathematics
Languages : en
Pages : 440
Book Description
In its traditional form, Clifford analysis provides the function theory for solutions of the Dirac equation. From the beginning, however, the theory was used and applied to problems in other fields of mathematics, numerical analysis, and mathematical physics. recently, the theory has enlarged its scope considerably by incorporating geometrical methods from global analysis on manifolds and methods from representation theory. New, interesting branches of the theory are based on conformally invariant, first-order systems other than the Dirac equation, or systems that are invariant with respect to a group other than the conformal group. This book represents an up-to-date review of Clifford analysis in its present form, its applications, and directions for future research. Readership: Mathematicians and theoretical physicists interested in Clifford analysis itself, or in its applications to other fields.
Analysis of Dirac Systems and Computational Algebra
Author: Fabrizio Colombo
Publisher: Springer Science & Business Media
ISBN: 0817681663
Category : Mathematics
Languages : en
Pages : 344
Book Description
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
Publisher: Springer Science & Business Media
ISBN: 0817681663
Category : Mathematics
Languages : en
Pages : 344
Book Description
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
Holomorphic Functions in the Plane and n-dimensional Space
Author: Klaus Gürlebeck
Publisher: Springer Science & Business Media
ISBN: 3764382716
Category : Mathematics
Languages : en
Pages : 407
Book Description
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter.
Publisher: Springer Science & Business Media
ISBN: 3764382716
Category : Mathematics
Languages : en
Pages : 407
Book Description
Complex analysis nowadays has higher-dimensional analoga: the algebra of complex numbers is replaced then by the non-commutative algebra of real quaternions or by Clifford algebras. During the last 30 years the so-called quaternionic and Clifford or hypercomplex analysis successfully developed to a powerful theory with many applications in analysis, engineering and mathematical physics. This textbook introduces both to classical and higher-dimensional results based on a uniform notion of holomorphy. Historical remarks, lots of examples, figures and exercises accompany each chapter.
Integral Representations For Spatial Models of Mathematical Physics
Author: Vladislav V Kravchenko
Publisher: CRC Press
ISBN: 1000158098
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems. The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics. This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.
Publisher: CRC Press
ISBN: 1000158098
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book provides a new mathematical theory for the treatment of an ample series of spatial problems of electrodynamics, particle physics, quantum mechanics and elasticity theory. This technique proves to be as powerful for solving the spatial problems of mathematical physics as complex analysis is for solving planar problems. The main analytic tool of the book, a non-harmonic version of hypercomplex analysis recently developed by the authors, is presented in detail. There are given applications of this theory to the boundary value problems of electrodynamics and elasticity theory as well as to the problem of quark confinement. A new approach to the linearization of special classes of the self-duality equation is also considered. Detailed proofs are given throughout. The book contains an extensive bibliography on closely related topics. This book will be of particular interest to academic and professional specialists and students in mathematics and physics who are interested in integral representations for partial differential equations. The book is self-contained and could be used as a main reference for special course seminars on the subject.