Hybrid Finite-volume/transported PDF Method for the Simulation of Turbulent Reactive Flows

Hybrid Finite-volume/transported PDF Method for the Simulation of Turbulent Reactive Flows PDF Author: Venkatramanan Raman
Publisher:
ISBN:
Category :
Languages : en
Pages : 384

Get Book Here

Book Description
A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite-Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow chlorination reactor. Detailed kinetics involving 37 species and 152 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique is discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

Hybrid Finite-volume/transported PDF Method for the Simulation of Turbulent Reactive Flows

Hybrid Finite-volume/transported PDF Method for the Simulation of Turbulent Reactive Flows PDF Author: Venkatramanan Raman
Publisher:
ISBN:
Category :
Languages : en
Pages : 384

Get Book Here

Book Description
A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite-Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow chlorination reactor. Detailed kinetics involving 37 species and 152 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique is discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

Advances in Particle/finite Volume Algorithms for Turbulent Reactive Flows

Advances in Particle/finite Volume Algorithms for Turbulent Reactive Flows PDF Author: Pavel Petkov Popov
Publisher:
ISBN:
Category :
Languages : en
Pages : 192

Get Book Here

Book Description
In the field of turbulent reactive flow simulations, hybrid particle/finite volume large eddy simulation/probability density function (LES/PDF) methods have been shown to be highly accurate in simulating laboratory-scale flames. Their strengths lie in the combination of the large eddy simulation procedure's ability to resolve the large, non-universal scales of turbulence, combined with the fact that probability density function models for turbulent combustion require no closure for the highly non-linear chemistry source term. This work presents advances in such hybrid particle/finite volume LES/PDF algorithms for turbulent reactive flows. New time stepping, interpolation, and coupling schemes have been proposed with the goal of reducing particle mass consistency (PMC) error (defined as the discrepancy between particle mass density and resolved finite volume density) and overall simulation error. The Multi-step Second-order Runge-Kutta (MRK2) integration scheme is an ODE integration scheme designed for reducing PMC errors when applied to discontinuous velocity fields. When applied to a discontinuous velocity field such as might be produced by a state-of-the art velocity interpolation scheme, MRK2 preserves the continuity of the Lagrangian position mapping and is second-order convergent in time, as opposed to a standard second-order Runge-Kutta scheme, which is only first-order convergent in time when applied to a discontinuous velocity field. The Direct Richardson p-th order (DRp) is a conceptually new family of SDE integration schemes which are weakly p-th order accurate in time, where p is an arbitrary positive integer. Unlike standard SDE integration schemes, which are based on matching appropriate terms in the Ito-Taylor expansion of the stochastic process, the DRp schemes work via Richardson extrapolation between the probability density functions of a set of first-order accurate Euler approximations with differing time steps. In the context of the Large Eddy Simulation/Probability Density Function (LES/PDF) code developed by the Turbulence and Combustion Group at Cornell University, a PDF to LES density coupling scheme via a transported specific volume (TSV) has been developed. While coupling approaches similar to TSV have been used previously in LES/PDF application, the present implementation is the first to allow overall second-order accuracy of the LES/PDF code in space and time. New implicit and explicit schemes for PMC error reduction schemes have been developed and tested in the context of the Sandia-Sydney bluff-body flame. Implicit PMC preservation schemes include new velocity and diffusivity interpolation algorithms, and explicit PMC error correction is achieved via a corrective velocity. While corrective velocity schemes have been used previously, the present algorithm, featuring a smoothed version of the PMC error field, is capable of maintaining the same PMC error levels with a corrective velocity of lower magnitude. Finally, the LES/PDF algorithm, developed by the Turbulence and Combustion group at Cornell, is applied to the Sandia-Sydney bluff-body flames. Comparison is made with experimental data, and the new code is in better agreement with experiment than previous simulations of the same series of flames.

A Consistent Hybrid Finite-volume/particle Method for the PDF Equations of Turbulent Reactive Flows

A Consistent Hybrid Finite-volume/particle Method for the PDF Equations of Turbulent Reactive Flows PDF Author: Metin Muradoglu
Publisher:
ISBN:
Category :
Languages : en
Pages : 364

Get Book Here

Book Description


A New Hybrid Finite-volume/particle Method for the PDF Equations of Turbulent Reactive Flows and Performance of Velocity Models

A New Hybrid Finite-volume/particle Method for the PDF Equations of Turbulent Reactive Flows and Performance of Velocity Models PDF Author: Özkan Eren
Publisher:
ISBN:
Category : Particle methods (Numerical analysis)
Languages : en
Pages : 120

Get Book Here

Book Description


Hybrid LES-PDF Methods for the Simulation of Turbulent Reactive Flows

Hybrid LES-PDF Methods for the Simulation of Turbulent Reactive Flows PDF Author: Venkatramanan Raman
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages :

Get Book Here

Book Description


Modeling and Simulation of Turbulent Mixing and Reaction

Modeling and Simulation of Turbulent Mixing and Reaction PDF Author: Daniel Livescu
Publisher: Springer Nature
ISBN: 9811526435
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.

High Performance Computing in Science and Engineering ' 08

High Performance Computing in Science and Engineering ' 08 PDF Author: Wolfgang E. Nagel
Publisher: Springer Science & Business Media
ISBN: 3540883037
Category : Mathematics
Languages : en
Pages : 596

Get Book Here

Book Description
The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ̈ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ̈ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructure project DEISA (Distributed European Infrastructure for Supercomputing Appli- tions) and in the European HPC support project HPC-Europa. Beyond that, HLRS and its partners in the GCS have agreed on a common strategy for the installation of the next generation of leading edge HPC hardware over the next ?ve years. The University of Stuttgart and the University of Karlsruhe have furth- more agreed to bundle their competences and resources.

Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Modelling and Simulation of Turbulent Heat Transfer

Modelling and Simulation of Turbulent Heat Transfer PDF Author: B. Sundén
Publisher: WIT Press
ISBN: 1853129569
Category : Science
Languages : en
Pages : 361

Get Book Here

Book Description
Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.

High Performance Computing in Science and Engineering ' 07

High Performance Computing in Science and Engineering ' 07 PDF Author: Wolfgang E. Nagel
Publisher: Springer Science & Business Media
ISBN: 3540747397
Category : Mathematics
Languages : en
Pages : 661

Get Book Here

Book Description
This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the Stuttgart High Performance Computing Center in 2007. The reports cover all fields of computational science and engineering, with emphasis on industrially relevant applications. Presenting results for both vector-based and microprocessor-based systems, the book allows comparison between performance levels and usability of various architectures.