Author: Lara Alcock
Publisher: Oxford University Press, USA
ISBN: 0198843380
Category : Mathematics
Languages : en
Pages : 307
Book Description
How to Think about Abstract Algebra provides an engaging and readable introduction to its subject, which encompasses group theory and ring theory. Abstract Algebra is central in most undergraduate mathematics degrees, and it captures regularities that appear across diverse mathematical structures - many people find it beautiful for this reason. But its abstraction can make its central ideas hard to grasp, and even the best students might find that they can follow some of the reasoning without really understanding what it is all about. This book aims to solve that problem. It is not like other Abstract Algebra texts and is not a textbook containing standard content. Rather, it is designed to be read before starting an Abstract Algebra course, or as a companion text once a course has begun. It builds up key information on five topics: binary operations, groups, quotient groups, isomorphisms and homomorphisms, and rings. It provides numerous examples, tables and diagrams, and its explanations are informed by research in mathematics education. The book also provides study advice focused on the skills that students need in order to learn successfully in their own Abstract Algebra courses. It explains how to interact productively with axioms, definitions, theorems and proofs, and how research in psychology should inform our beliefs about effective learning.
How to Think about Abstract Algebra
A Book of Abstract Algebra
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402
Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
How to Think About Analysis
Author: Lara Alcock
Publisher: OUP Oxford
ISBN: 0191035378
Category : Mathematics
Languages : en
Pages : 265
Book Description
Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.
Publisher: OUP Oxford
ISBN: 0191035378
Category : Mathematics
Languages : en
Pages : 265
Book Description
Analysis (sometimes called Real Analysis or Advanced Calculus) is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the student's existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.
Algebra: Chapter 0
Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713
Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
A First Course in Abstract Algebra
Author: Hiram Paley
Publisher:
ISBN:
Category : Algebra, Abstract
Languages : en
Pages : 334
Book Description
Publisher:
ISBN:
Category : Algebra, Abstract
Languages : en
Pages : 334
Book Description
Abstract Algebra
Author: Dan Saracino
Publisher: Waveland Press
ISBN: 1478610131
Category : Mathematics
Languages : en
Pages : 320
Book Description
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
Publisher: Waveland Press
ISBN: 1478610131
Category : Mathematics
Languages : en
Pages : 320
Book Description
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
Discourses on Algebra
Author: Igor R. Shafarevich
Publisher: Springer Science & Business Media
ISBN: 3642563252
Category : Mathematics
Languages : en
Pages : 288
Book Description
Using various examples this monograph shows that algebra is one of the most beautiful forms of mathematics. In doing so, it explains the basics of algebra, number theory, set theory and probability. The text presupposes very limited knowledge of mathematics, making it an ideal read for anybody new to the subject. The author, I.R. Shafarevich, is well-known across the world as one of the most outstanding mathematicians of this century as well as one of the most respected mathematical writers.
Publisher: Springer Science & Business Media
ISBN: 3642563252
Category : Mathematics
Languages : en
Pages : 288
Book Description
Using various examples this monograph shows that algebra is one of the most beautiful forms of mathematics. In doing so, it explains the basics of algebra, number theory, set theory and probability. The text presupposes very limited knowledge of mathematics, making it an ideal read for anybody new to the subject. The author, I.R. Shafarevich, is well-known across the world as one of the most outstanding mathematicians of this century as well as one of the most respected mathematical writers.
A Course in Algebra
Author: Ėrnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category : Mathematics
Languages : en
Pages : 532
Book Description
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category : Mathematics
Languages : en
Pages : 532
Book Description
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.
Undergraduate Algebra
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1475768982
Category : Mathematics
Languages : en
Pages : 380
Book Description
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group
Publisher: Springer Science & Business Media
ISBN: 1475768982
Category : Mathematics
Languages : en
Pages : 380
Book Description
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group
An Invitation to Abstract Algebra
Author: Steven J. Rosenberg
Publisher: CRC Press
ISBN: 1000516334
Category : Mathematics
Languages : en
Pages : 397
Book Description
Studying abstract algebra can be an adventure of awe-inspiring discovery. The subject need not be watered down nor should it be presented as if all students will become mathematics instructors. This is a beautiful, profound, and useful field which is part of the shared language of many areas both within and outside of mathematics. To begin this journey of discovery, some experience with mathematical reasoning is beneficial. This text takes a fairly rigorous approach to its subject, and expects the reader to understand and create proofs as well as examples throughout. The book follows a single arc, starting from humble beginnings with arithmetic and high-school algebra, gradually introducing abstract structures and concepts, and culminating with Niels Henrik Abel and Evariste Galois’ achievement in understanding how we can—and cannot—represent the roots of polynomials. The mathematically experienced reader may recognize a bias toward commutative algebra and fondness for number theory. The presentation includes the following features: Exercises are designed to support and extend the material in the chapter, as well as prepare for the succeeding chapters. The text can be used for a one, two, or three-term course. Each new topic is motivated with a question. A collection of projects appears in Chapter 23. Abstract algebra is indeed a deep subject; it can transform not only the way one thinks about mathematics, but the way that one thinks—period. This book is offered as a manual to a new way of thinking. The author’s aim is to instill the desire to understand the material, to encourage more discovery, and to develop an appreciation of the subject for its own sake.
Publisher: CRC Press
ISBN: 1000516334
Category : Mathematics
Languages : en
Pages : 397
Book Description
Studying abstract algebra can be an adventure of awe-inspiring discovery. The subject need not be watered down nor should it be presented as if all students will become mathematics instructors. This is a beautiful, profound, and useful field which is part of the shared language of many areas both within and outside of mathematics. To begin this journey of discovery, some experience with mathematical reasoning is beneficial. This text takes a fairly rigorous approach to its subject, and expects the reader to understand and create proofs as well as examples throughout. The book follows a single arc, starting from humble beginnings with arithmetic and high-school algebra, gradually introducing abstract structures and concepts, and culminating with Niels Henrik Abel and Evariste Galois’ achievement in understanding how we can—and cannot—represent the roots of polynomials. The mathematically experienced reader may recognize a bias toward commutative algebra and fondness for number theory. The presentation includes the following features: Exercises are designed to support and extend the material in the chapter, as well as prepare for the succeeding chapters. The text can be used for a one, two, or three-term course. Each new topic is motivated with a question. A collection of projects appears in Chapter 23. Abstract algebra is indeed a deep subject; it can transform not only the way one thinks about mathematics, but the way that one thinks—period. This book is offered as a manual to a new way of thinking. The author’s aim is to instill the desire to understand the material, to encourage more discovery, and to develop an appreciation of the subject for its own sake.