Author: Paul J. Nahin
Publisher: Princeton University Press
ISBN: 0691207844
Category : Science
Languages : en
Pages : 232
Book Description
An entertaining mathematical exploration of the heat equation and its role in the triumphant development of the trans-Atlantic telegraph cable Heat, like gravity, shapes nearly every aspect of our world and universe, from how milk dissolves in coffee to how molten planets cool. The heat equation, a cornerstone of modern physics, demystifies such processes, painting a mathematical picture of the way heat diffuses through matter. Presenting the mathematics and history behind the heat equation, Hot Molecules, Cold Electrons tells the remarkable story of how this foundational idea brought about one of the greatest technological advancements of the modern era. Paul Nahin vividly recounts the heat equation’s tremendous influence on society, showing how French mathematical physicist Joseph Fourier discovered, derived, and solved the equation in the early nineteenth century. Nahin then follows Scottish physicist William Thomson, whose further analysis of Fourier’s explorations led to the pioneering trans-Atlantic telegraph cable. This feat of engineering reduced the time it took to send a message across the ocean from weeks to minutes. Readers also learn that Thomson used Fourier’s solutions to calculate the age of the earth, and, in a bit of colorful lore, that writer Charles Dickens relied on the trans-Atlantic cable to save himself from a career-damaging scandal. The book’s mathematical and scientific explorations can be easily understood by anyone with a basic knowledge of high school calculus and physics, and MATLAB code is included to aid readers who would like to solve the heat equation themselves. A testament to the intricate links between mathematics and physics, Hot Molecules, Cold Electrons offers a fascinating glimpse into the relationship between a formative equation and one of the most important developments in the history of human communication.
Hot Molecules, Cold Electrons
Author: Paul J. Nahin
Publisher: Princeton University Press
ISBN: 0691207844
Category : Science
Languages : en
Pages : 232
Book Description
An entertaining mathematical exploration of the heat equation and its role in the triumphant development of the trans-Atlantic telegraph cable Heat, like gravity, shapes nearly every aspect of our world and universe, from how milk dissolves in coffee to how molten planets cool. The heat equation, a cornerstone of modern physics, demystifies such processes, painting a mathematical picture of the way heat diffuses through matter. Presenting the mathematics and history behind the heat equation, Hot Molecules, Cold Electrons tells the remarkable story of how this foundational idea brought about one of the greatest technological advancements of the modern era. Paul Nahin vividly recounts the heat equation’s tremendous influence on society, showing how French mathematical physicist Joseph Fourier discovered, derived, and solved the equation in the early nineteenth century. Nahin then follows Scottish physicist William Thomson, whose further analysis of Fourier’s explorations led to the pioneering trans-Atlantic telegraph cable. This feat of engineering reduced the time it took to send a message across the ocean from weeks to minutes. Readers also learn that Thomson used Fourier’s solutions to calculate the age of the earth, and, in a bit of colorful lore, that writer Charles Dickens relied on the trans-Atlantic cable to save himself from a career-damaging scandal. The book’s mathematical and scientific explorations can be easily understood by anyone with a basic knowledge of high school calculus and physics, and MATLAB code is included to aid readers who would like to solve the heat equation themselves. A testament to the intricate links between mathematics and physics, Hot Molecules, Cold Electrons offers a fascinating glimpse into the relationship between a formative equation and one of the most important developments in the history of human communication.
Publisher: Princeton University Press
ISBN: 0691207844
Category : Science
Languages : en
Pages : 232
Book Description
An entertaining mathematical exploration of the heat equation and its role in the triumphant development of the trans-Atlantic telegraph cable Heat, like gravity, shapes nearly every aspect of our world and universe, from how milk dissolves in coffee to how molten planets cool. The heat equation, a cornerstone of modern physics, demystifies such processes, painting a mathematical picture of the way heat diffuses through matter. Presenting the mathematics and history behind the heat equation, Hot Molecules, Cold Electrons tells the remarkable story of how this foundational idea brought about one of the greatest technological advancements of the modern era. Paul Nahin vividly recounts the heat equation’s tremendous influence on society, showing how French mathematical physicist Joseph Fourier discovered, derived, and solved the equation in the early nineteenth century. Nahin then follows Scottish physicist William Thomson, whose further analysis of Fourier’s explorations led to the pioneering trans-Atlantic telegraph cable. This feat of engineering reduced the time it took to send a message across the ocean from weeks to minutes. Readers also learn that Thomson used Fourier’s solutions to calculate the age of the earth, and, in a bit of colorful lore, that writer Charles Dickens relied on the trans-Atlantic cable to save himself from a career-damaging scandal. The book’s mathematical and scientific explorations can be easily understood by anyone with a basic knowledge of high school calculus and physics, and MATLAB code is included to aid readers who would like to solve the heat equation themselves. A testament to the intricate links between mathematics and physics, Hot Molecules, Cold Electrons offers a fascinating glimpse into the relationship between a formative equation and one of the most important developments in the history of human communication.
Hot Molecules & Cold Electrons
Author: Paul J. Nahin
Publisher:
ISBN: 9780691191270
Category : Heat equation
Languages : en
Pages :
Book Description
"This book is a testament to the intimate, mutual embrace of mathematics and physics. It achieves that by telling the story of an historical event of tremendous impact upon society, both spiritually and technically - the mid-19th century construction of the trans-Atlantic telegraph cable, which reduced the time to send a message across the ocean from weeks to minutes. The story of the cable actually begins decades earlier, at the start of the century, with the French mathematical physicist Joseph Fourier's development of the mathematics that the Scottish physicist William Thomson (later Lord Kelvin) would use to analyze the electrical physics of the cable. The story of Fourier opens the book, that of Thomson completes it, and in-between the reader will learn how to derive Fourier's second-order partial differential equation for the flow of heat energy in matter, how Fourier solved the heat equation, how Thomson used Fourier's solutions to calculate the age of the Earth (imagined to be the result of the of an initially molten sphere of blinding brilliance) and, finally, how Thomson showed that the heat equation also describes the Atlantic cable. An epilogue describing the post-Thomson developments completes the book. All readers who have completed first courses at the level of AP-calculus and AP-physics will be able to read this book. This is a perhaps surprising feature of the book, as the mathematics discussed is normally not encountered until the second year (or even later) of college-level work. This book shows that, in fact, the technical material is fully graspable by a college freshman. Unlike a pure technical book, readers will also find a lot of fascinating history in this book (including the bizarre story of how the English novelist Charles Dickens used the Atlantic cable to send a coded message - during his 1867 American reading tour - to avoid a career-damaging scandal concerning his mistress)"--
Publisher:
ISBN: 9780691191270
Category : Heat equation
Languages : en
Pages :
Book Description
"This book is a testament to the intimate, mutual embrace of mathematics and physics. It achieves that by telling the story of an historical event of tremendous impact upon society, both spiritually and technically - the mid-19th century construction of the trans-Atlantic telegraph cable, which reduced the time to send a message across the ocean from weeks to minutes. The story of the cable actually begins decades earlier, at the start of the century, with the French mathematical physicist Joseph Fourier's development of the mathematics that the Scottish physicist William Thomson (later Lord Kelvin) would use to analyze the electrical physics of the cable. The story of Fourier opens the book, that of Thomson completes it, and in-between the reader will learn how to derive Fourier's second-order partial differential equation for the flow of heat energy in matter, how Fourier solved the heat equation, how Thomson used Fourier's solutions to calculate the age of the Earth (imagined to be the result of the of an initially molten sphere of blinding brilliance) and, finally, how Thomson showed that the heat equation also describes the Atlantic cable. An epilogue describing the post-Thomson developments completes the book. All readers who have completed first courses at the level of AP-calculus and AP-physics will be able to read this book. This is a perhaps surprising feature of the book, as the mathematics discussed is normally not encountered until the second year (or even later) of college-level work. This book shows that, in fact, the technical material is fully graspable by a college freshman. Unlike a pure technical book, readers will also find a lot of fascinating history in this book (including the bizarre story of how the English novelist Charles Dickens used the Atlantic cable to send a coded message - during his 1867 American reading tour - to avoid a career-damaging scandal concerning his mistress)"--
Low Temperatures and Cold Molecules
Author: Ian W. M. Smith
Publisher: Imperial College Press
ISBN: 1848162103
Category : Science
Languages : en
Pages : 578
Book Description
This book brings together, for the first time, the results of recent research in areas ranging from the chemistry of cold interstellar clouds (10-20 K), through laboratory studies of the spectroscopy and kinetics of ions, radicals and molecules, to studies of molecules in liquid helium droplets, to attempts to create molecular (as distinct from atomic) Bose-Einstein condensates.
Publisher: Imperial College Press
ISBN: 1848162103
Category : Science
Languages : en
Pages : 578
Book Description
This book brings together, for the first time, the results of recent research in areas ranging from the chemistry of cold interstellar clouds (10-20 K), through laboratory studies of the spectroscopy and kinetics of ions, radicals and molecules, to studies of molecules in liquid helium droplets, to attempts to create molecular (as distinct from atomic) Bose-Einstein condensates.
Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom
Author: Vadim Kaloshin
Publisher: Princeton University Press
ISBN: 0691202524
Category : Mathematics
Languages : en
Pages : 218
Book Description
The first complete proof of Arnold diffusion—one of the most important problems in dynamical systems and mathematical physics Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. In this groundbreaking book, Vadim Kaloshin and Ke Zhang provide the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. Kaloshin and Zhang follow Mather's strategy but emphasize a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, this book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.
Publisher: Princeton University Press
ISBN: 0691202524
Category : Mathematics
Languages : en
Pages : 218
Book Description
The first complete proof of Arnold diffusion—one of the most important problems in dynamical systems and mathematical physics Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. In this groundbreaking book, Vadim Kaloshin and Ke Zhang provide the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. Kaloshin and Zhang follow Mather's strategy but emphasize a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, this book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.
Cold Molecules
Author: Roman Krems
Publisher: CRC Press
ISBN: 1420059041
Category : Science
Languages : en
Pages : 756
Book Description
The First Book on Ultracold MoleculesCold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusse
Publisher: CRC Press
ISBN: 1420059041
Category : Science
Languages : en
Pages : 756
Book Description
The First Book on Ultracold MoleculesCold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusse
Plasma Science and Technology
Author: Aamir Shahzad
Publisher: BoD – Books on Demand
ISBN: 1839696230
Category : Science
Languages : en
Pages : 248
Book Description
Plasma science and technology (PST) is a discipline investigating fundamental transport behaviors, interaction physics, and reaction chemistry of plasma and its applications in different technologies and fields. Plasma has uses in refrigeration, biotechnology, health care, microelectronics and semiconductors, nanotechnology, space and environmental sciences, and so on. This book provides a comprehensive overview of PST, including information on different types of plasma, basic interactions of plasma with organic materials, plasma-based energy devices, low-temperature plasma for complex systems, and much more.
Publisher: BoD – Books on Demand
ISBN: 1839696230
Category : Science
Languages : en
Pages : 248
Book Description
Plasma science and technology (PST) is a discipline investigating fundamental transport behaviors, interaction physics, and reaction chemistry of plasma and its applications in different technologies and fields. Plasma has uses in refrigeration, biotechnology, health care, microelectronics and semiconductors, nanotechnology, space and environmental sciences, and so on. This book provides a comprehensive overview of PST, including information on different types of plasma, basic interactions of plasma with organic materials, plasma-based energy devices, low-temperature plasma for complex systems, and much more.
Lessons From Nanoelectronics: A New Perspective On Transport (Second Edition) - Part A: Basic Concepts
Author: Supriyo Datta
Publisher: World Scientific
ISBN: 9813209763
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Everyone is familiar with the amazing performance of a modern smartphone, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. The same amazing technology has also led to a deeper understanding of the nature of current flow and heat dissipation on an atomic scale which is of broad relevance to the general problems of non-equilibrium statistical mechanics that pervade many different fields.This book is based on a set of two online courses originally offered in 2012 on nanoHUB-U and more recently in 2015 on edX. In preparing the second edition the author decided to split it into parts A and B titled Basic Concepts and Quantum Transport respectively, along the lines of the two courses. A list of available video lectures corresponding to different sections of this volume is provided upfront.To make these lectures accessible to anyone in any branch of science or engineering, the author assume very little background beyond linear algebra and differential equations. However, the author will be discussing advanced concepts that should be of interest even to specialists, who are encouraged to look at his earlier books for additional technical details.
Publisher: World Scientific
ISBN: 9813209763
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
Everyone is familiar with the amazing performance of a modern smartphone, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. The same amazing technology has also led to a deeper understanding of the nature of current flow and heat dissipation on an atomic scale which is of broad relevance to the general problems of non-equilibrium statistical mechanics that pervade many different fields.This book is based on a set of two online courses originally offered in 2012 on nanoHUB-U and more recently in 2015 on edX. In preparing the second edition the author decided to split it into parts A and B titled Basic Concepts and Quantum Transport respectively, along the lines of the two courses. A list of available video lectures corresponding to different sections of this volume is provided upfront.To make these lectures accessible to anyone in any branch of science or engineering, the author assume very little background beyond linear algebra and differential equations. However, the author will be discussing advanced concepts that should be of interest even to specialists, who are encouraged to look at his earlier books for additional technical details.
How Everything Works
Author: Louis A. Bloomfield
Publisher: John Wiley & Sons
ISBN: 0470170662
Category : Science
Languages : en
Pages : 738
Book Description
By explaining the physics behind ordinary objects, this book unravels the mysteries of how things work. Using familiar examples from everyday life and modern technology, this book explains the seemingly inexplicable phenomena we encounter all around us. As it examines everything from roller coasters to radio, musical instruments to makeup, and knuckleballs to nuclear weapons, How Everything Works provides the answers to such questions as why the sky is blue, why metal is a problem in microwave ovens, and why some clothes require dry cleaning. With fascinating and fun real-life examples that provide the answers to scores of questions, How Everything Works is nothing short of a user's manual to our everyday world.
Publisher: John Wiley & Sons
ISBN: 0470170662
Category : Science
Languages : en
Pages : 738
Book Description
By explaining the physics behind ordinary objects, this book unravels the mysteries of how things work. Using familiar examples from everyday life and modern technology, this book explains the seemingly inexplicable phenomena we encounter all around us. As it examines everything from roller coasters to radio, musical instruments to makeup, and knuckleballs to nuclear weapons, How Everything Works provides the answers to such questions as why the sky is blue, why metal is a problem in microwave ovens, and why some clothes require dry cleaning. With fascinating and fun real-life examples that provide the answers to scores of questions, How Everything Works is nothing short of a user's manual to our everyday world.
In Pursuit of Zeta-3
Author: Paul J. Nahin
Publisher: Princeton University Press
ISBN: 0691206074
Category : Mathematics
Languages : en
Pages : 342
Book Description
"For centuries, mathematicians have tried, and failed, to solve the zeta-3 problem. This problem is simple in its formulation, but remains unsolved to this day, despite the attempts of some of the world's greatest mathematicians to solve it. The problem can be stated as follows: is there a simple symbolic formula for the following sum: 1+(1/2)^3+(1/3)^3+(1/4)^3+...? Although it is possible to calculate the approximate numerical value of the sum (for those interested, it's 1.20205...), there is no known symbolic expression. A symbolic formula would not only provide an exact value for the sum, but would allow for greater insight into its characteristics and properties. The answers to these questions are not of purely academic interest; the zeta-3 problem has close connections to physics, engineering, and other areas of mathematics. Zeta-3 arises in quantum electrodynamics and in number theory, for instance, and it is closely connected to the Riemann hypothesis. In In Pursuit of zeta-3, Paul Nahin turns his sharp, witty eye on the zeta-3 problem. He describes the problem's history, and provides numerous "challenge questions" to engage readers, along with Matlab code. Unlike other, similarly challenging problems, anyone with a basic mathematical background can understand the problem-making it an ideal choice for a pop math book"--
Publisher: Princeton University Press
ISBN: 0691206074
Category : Mathematics
Languages : en
Pages : 342
Book Description
"For centuries, mathematicians have tried, and failed, to solve the zeta-3 problem. This problem is simple in its formulation, but remains unsolved to this day, despite the attempts of some of the world's greatest mathematicians to solve it. The problem can be stated as follows: is there a simple symbolic formula for the following sum: 1+(1/2)^3+(1/3)^3+(1/4)^3+...? Although it is possible to calculate the approximate numerical value of the sum (for those interested, it's 1.20205...), there is no known symbolic expression. A symbolic formula would not only provide an exact value for the sum, but would allow for greater insight into its characteristics and properties. The answers to these questions are not of purely academic interest; the zeta-3 problem has close connections to physics, engineering, and other areas of mathematics. Zeta-3 arises in quantum electrodynamics and in number theory, for instance, and it is closely connected to the Riemann hypothesis. In In Pursuit of zeta-3, Paul Nahin turns his sharp, witty eye on the zeta-3 problem. He describes the problem's history, and provides numerous "challenge questions" to engage readers, along with Matlab code. Unlike other, similarly challenging problems, anyone with a basic mathematical background can understand the problem-making it an ideal choice for a pop math book"--
Lessons From Nanoelectronics: A New Perspective On Transport
Author: Supriyo Datta
Publisher: World Scientific Publishing Company
ISBN: 9814483907
Category : Science
Languages : en
Pages : 490
Book Description
Everyone is familiar with the amazing performance of a modern smartphone, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms in length.These lecture notes are about a less appreciated by-product of the microelectronics revolution, namely the deeper understanding of current flow, and device operation that it has enabled, which forms the basis for a new approach to transport problems.The book assumes very little background beyond linear algebra and differential equations, and is intended to be accessible to anyone in any branch of science or engineering.
Publisher: World Scientific Publishing Company
ISBN: 9814483907
Category : Science
Languages : en
Pages : 490
Book Description
Everyone is familiar with the amazing performance of a modern smartphone, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms in length.These lecture notes are about a less appreciated by-product of the microelectronics revolution, namely the deeper understanding of current flow, and device operation that it has enabled, which forms the basis for a new approach to transport problems.The book assumes very little background beyond linear algebra and differential equations, and is intended to be accessible to anyone in any branch of science or engineering.