Author: Niranjan Panda
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 456
Book Description
Historical overview of host plant resistance; Crop plant and insect diversity; Secondary plant metabolites for insect resistance; Insect - plant interactions; Host plant selection; Mechanisms of resistance; Factors affecting expression of resistance; Screening for insect resistance; Plant resistance and insect pest management; Genetics of resistance to insects; Breeding for resistance to insects.
Host Plant Resistance to Insects
Author: Niranjan Panda
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 456
Book Description
Historical overview of host plant resistance; Crop plant and insect diversity; Secondary plant metabolites for insect resistance; Insect - plant interactions; Host plant selection; Mechanisms of resistance; Factors affecting expression of resistance; Screening for insect resistance; Plant resistance and insect pest management; Genetics of resistance to insects; Breeding for resistance to insects.
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 456
Book Description
Historical overview of host plant resistance; Crop plant and insect diversity; Secondary plant metabolites for insect resistance; Insect - plant interactions; Host plant selection; Mechanisms of resistance; Factors affecting expression of resistance; Screening for insect resistance; Plant resistance and insect pest management; Genetics of resistance to insects; Breeding for resistance to insects.
Plant Resistance to Insects
Author: C. Michael Smith
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 308
Book Description
What is plant resistance to insects? How is plant resistance to insects obtained? How can plant resistance to insects be utilized?
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 308
Book Description
What is plant resistance to insects? How is plant resistance to insects obtained? How can plant resistance to insects be utilized?
Principles of Host-plant Resistance to Insect Pests
Author: Niranjan Panda
Publisher: Allanheld & Schram
ISBN:
Category : Science
Languages : en
Pages : 424
Book Description
Introduction; Insect-plant interaction; Host-plant selection in Phytophagous insects; Mechanisms of resistance; Biochemistry of resistance; Factors affecting expression of resistance; Resistance programme; Genetics of resistance; Plant resistance in pest management.
Publisher: Allanheld & Schram
ISBN:
Category : Science
Languages : en
Pages : 424
Book Description
Introduction; Insect-plant interaction; Host-plant selection in Phytophagous insects; Mechanisms of resistance; Biochemistry of resistance; Factors affecting expression of resistance; Resistance programme; Genetics of resistance; Plant resistance in pest management.
Experimental Techniques in Host-Plant Resistance
Author: Akshay Kumar Chakravarthy
Publisher: Springer
ISBN: 9811326525
Category : Science
Languages : en
Pages : 292
Book Description
The earliest land-plants evolved around 450 million years ago from aquatic plants devoid of vascular systems. The diversification of flowering plants (angiosperms) during the Cretaceous period is associated with speciation in insects. Early insect herbivores were mandibulate, but the evolution of vascular plants led to the co-evolution of other forms of herbivory, such as leaf feeding, sap-sucking, leaf mining, tissue borer, gall forming and nectar-feeding. Plant defense against biotic stress is an adaptive evolution by plants to increase their fitness. Plants use a variety of strategies to defend against damage caused by herbivores. Plant defense mechanisms are either inbuilt or induced. Inbuilt mechanisms are always present within the plant, while induced defenses are produced or mobilized to the site where a plant is injured. Induced defense mechanisms include morphological, physiological changes and production of secondary metabolites. Host plant resistance (HPR) is one of the eco-friendly methods of pest management. It protects the crop by making it less suitable or tolerant to the pest. While books on theoretical aspects of HPR are available, an exclusive book on the practical aspects is lacking. There is a wide gap between the theory and the experimental procedures required for conducting studies on plant resistance for the post graduate students and young researchers. A dire need for a book on practical aspects was strongly felt. Initially a practical manual was prepared which eventually evolved into the present book. We hope this book provides information on major aspects of screening crop germplasm, sampling techniques, genetic and biochemical basis of HPR, behavioural studies on pheromone and plant volatiles, and some of the recent approaches in HPR. Further, the references provide the scientific articles and books as additional information to readers and workers alike.
Publisher: Springer
ISBN: 9811326525
Category : Science
Languages : en
Pages : 292
Book Description
The earliest land-plants evolved around 450 million years ago from aquatic plants devoid of vascular systems. The diversification of flowering plants (angiosperms) during the Cretaceous period is associated with speciation in insects. Early insect herbivores were mandibulate, but the evolution of vascular plants led to the co-evolution of other forms of herbivory, such as leaf feeding, sap-sucking, leaf mining, tissue borer, gall forming and nectar-feeding. Plant defense against biotic stress is an adaptive evolution by plants to increase their fitness. Plants use a variety of strategies to defend against damage caused by herbivores. Plant defense mechanisms are either inbuilt or induced. Inbuilt mechanisms are always present within the plant, while induced defenses are produced or mobilized to the site where a plant is injured. Induced defense mechanisms include morphological, physiological changes and production of secondary metabolites. Host plant resistance (HPR) is one of the eco-friendly methods of pest management. It protects the crop by making it less suitable or tolerant to the pest. While books on theoretical aspects of HPR are available, an exclusive book on the practical aspects is lacking. There is a wide gap between the theory and the experimental procedures required for conducting studies on plant resistance for the post graduate students and young researchers. A dire need for a book on practical aspects was strongly felt. Initially a practical manual was prepared which eventually evolved into the present book. We hope this book provides information on major aspects of screening crop germplasm, sampling techniques, genetic and biochemical basis of HPR, behavioural studies on pheromone and plant volatiles, and some of the recent approaches in HPR. Further, the references provide the scientific articles and books as additional information to readers and workers alike.
Breeding Insect Resistant Crops for Sustainable Agriculture
Author: Ramesh Arora
Publisher: Springer
ISBN: 9811060568
Category : Science
Languages : en
Pages : 433
Book Description
This book reviews and synthesizes the recent advances in exploiting host plant resistance to insects, highlighting the role of molecular techniques in breeding insect resistant crops. It also provides an overview of the fascinating field of insect-plant relationships, which is fundamental to the study of host-plant resistance to insects. Further, it discusses the conventional and molecular techniques utilized/useful in breeding for resistance to insect-pests including back-cross breeding, modified population improvement methods for insect resistance, marker-assisted backcrossing to expedite the breeding process, identification and validation of new insect-resistance genes and their potential for utilization, genomics, metabolomics, transgenesis and RNAi. Lastly, it analyzes the successes, limitations and prospects for the development of insect-resistant cultivars of rice, maize, sorghum and millet, cotton, rapeseed, legumes and fruit crops, and highlights strategies for management of insect biotypes that limit the success and durability of insect-resistant cultivators in the field. Arthropod pests act as major constraints in the agro-ecosystem. It has been estimated that arthropod pests may be destroying around one-fifth of the global agricultural production/potential production every year. Further, the losses are considerably higher in the developing tropics of Asia and Africa, which are already battling severe food shortage. Integrated pest management (IPM) has emerged as the dominant paradigm for minimizing damage by the insects and non-insect pests over the last 50 years. Pest resistant cultivars represent one of the most environmentally benign, economically viable and ecologically sustainable options for utilization in IPM programs. Hundreds of insect-resistant cultivars of rice, wheat, maize, sorghum, cotton, sugarcane and other crops have been developed worldwide and are extensively grown for increasing and/or stabilizing crop productivity. The annual economic value of arthropod resistance genes developed in global agriculture has been estimated to be greater than US$ 2 billion Despite the impressive achievements and even greater potential in minimizing pest- related losses, only a handful of books have been published on the topic of host-plant resistance to insects. This book fills this wide gap in the literature on breeding insect- resistant crops. It is aimed at plant breeders, entomologists, plant biotechnologists and IPM experts, as well as those working on sustainable agriculture and food security.
Publisher: Springer
ISBN: 9811060568
Category : Science
Languages : en
Pages : 433
Book Description
This book reviews and synthesizes the recent advances in exploiting host plant resistance to insects, highlighting the role of molecular techniques in breeding insect resistant crops. It also provides an overview of the fascinating field of insect-plant relationships, which is fundamental to the study of host-plant resistance to insects. Further, it discusses the conventional and molecular techniques utilized/useful in breeding for resistance to insect-pests including back-cross breeding, modified population improvement methods for insect resistance, marker-assisted backcrossing to expedite the breeding process, identification and validation of new insect-resistance genes and their potential for utilization, genomics, metabolomics, transgenesis and RNAi. Lastly, it analyzes the successes, limitations and prospects for the development of insect-resistant cultivars of rice, maize, sorghum and millet, cotton, rapeseed, legumes and fruit crops, and highlights strategies for management of insect biotypes that limit the success and durability of insect-resistant cultivators in the field. Arthropod pests act as major constraints in the agro-ecosystem. It has been estimated that arthropod pests may be destroying around one-fifth of the global agricultural production/potential production every year. Further, the losses are considerably higher in the developing tropics of Asia and Africa, which are already battling severe food shortage. Integrated pest management (IPM) has emerged as the dominant paradigm for minimizing damage by the insects and non-insect pests over the last 50 years. Pest resistant cultivars represent one of the most environmentally benign, economically viable and ecologically sustainable options for utilization in IPM programs. Hundreds of insect-resistant cultivars of rice, wheat, maize, sorghum, cotton, sugarcane and other crops have been developed worldwide and are extensively grown for increasing and/or stabilizing crop productivity. The annual economic value of arthropod resistance genes developed in global agriculture has been estimated to be greater than US$ 2 billion Despite the impressive achievements and even greater potential in minimizing pest- related losses, only a handful of books have been published on the topic of host-plant resistance to insects. This book fills this wide gap in the literature on breeding insect- resistant crops. It is aimed at plant breeders, entomologists, plant biotechnologists and IPM experts, as well as those working on sustainable agriculture and food security.
Insect Pests of Millets
Author: A. Kalaisekar
Publisher: Academic Press
ISBN: 0128042850
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
Insect Pests of Millets: Systematics, Bionomics, and Management focuses on protecting the cultivated cereals that many worldwide populations depend on for food across the semi-arid tropics of the world. Providing coverage of all the major cultivated millets, including sorghum, pearlmillet, finger millet, barnyard millet, prosomillet, little millet, kodomillet, and foxtail millet, this comprehensive book on insect pests is the first of its kind that explores systematics, bionomics, distribution, damage, host range, biology, monitoring techniques, and management options, all accompanied by useful illustrations and color plates. By exploring the novel aspects of Insect-plant relationships, including host signaling orientation, host specialization, pest – host evolutionary relationship, and biogeography of insects and host plants, the book presents the latest ecologically sound and innovative techniques in insect pest management from a general overview of pest management to new biotechnological interventions. - Includes the most comprehensive and relevant aspects of insect systematics, including synonyms, nomenclatural history, and identification characters to quickly guide readers to desired information - Addresses aspects of insect-plant relationships, including host signaling and orientation, host specialization, pest – host evolutionary relationship, and biogeography of insects and host plant - Presents the latest research findings related to the ecological, behavioral, and physiological aspects of millet pests
Publisher: Academic Press
ISBN: 0128042850
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
Insect Pests of Millets: Systematics, Bionomics, and Management focuses on protecting the cultivated cereals that many worldwide populations depend on for food across the semi-arid tropics of the world. Providing coverage of all the major cultivated millets, including sorghum, pearlmillet, finger millet, barnyard millet, prosomillet, little millet, kodomillet, and foxtail millet, this comprehensive book on insect pests is the first of its kind that explores systematics, bionomics, distribution, damage, host range, biology, monitoring techniques, and management options, all accompanied by useful illustrations and color plates. By exploring the novel aspects of Insect-plant relationships, including host signaling orientation, host specialization, pest – host evolutionary relationship, and biogeography of insects and host plants, the book presents the latest ecologically sound and innovative techniques in insect pest management from a general overview of pest management to new biotechnological interventions. - Includes the most comprehensive and relevant aspects of insect systematics, including synonyms, nomenclatural history, and identification characters to quickly guide readers to desired information - Addresses aspects of insect-plant relationships, including host signaling and orientation, host specialization, pest – host evolutionary relationship, and biogeography of insects and host plant - Presents the latest research findings related to the ecological, behavioral, and physiological aspects of millet pests
Ecofriendly Pest Management for Food Security
Author: Omkar Ph.D.
Publisher: Academic Press
ISBN: 0128032669
Category : Science
Languages : en
Pages : 764
Book Description
Ecofriendly Pest Management for Food Security explores the broad range of opportunity and challenges afforded by Integrated Pest Management systems. The book focuses on the insect resistance that has developed as a result of pest control chemicals, and how new methods of environmentally complementary pest control can be used to suppress harmful organisms while protecting the soil, plants, and air around them. As the world's population continues its rapid increase, this book addresses the production of cereals, vegetables, fruits, and other foods and their subsequent demand increase. Traditional means of food crop production face proven limitations and increasing research is turning to alternative means of crop growth and protection. - Addresses environmentally focused pest control with specific attention to its role in food security and sustainability. - Includes a range of pest management methods, from natural enemies to biomolecules. - Written by experts with extensive real-world experience.
Publisher: Academic Press
ISBN: 0128032669
Category : Science
Languages : en
Pages : 764
Book Description
Ecofriendly Pest Management for Food Security explores the broad range of opportunity and challenges afforded by Integrated Pest Management systems. The book focuses on the insect resistance that has developed as a result of pest control chemicals, and how new methods of environmentally complementary pest control can be used to suppress harmful organisms while protecting the soil, plants, and air around them. As the world's population continues its rapid increase, this book addresses the production of cereals, vegetables, fruits, and other foods and their subsequent demand increase. Traditional means of food crop production face proven limitations and increasing research is turning to alternative means of crop growth and protection. - Addresses environmentally focused pest control with specific attention to its role in food security and sustainability. - Includes a range of pest management methods, from natural enemies to biomolecules. - Written by experts with extensive real-world experience.
Plant Resistance to Arthropods
Author: C. Michael Smith
Publisher: Springer Science & Business Media
ISBN: 9781402037016
Category : Science
Languages : en
Pages : 444
Book Description
Arthropod resistant crops reduce pesticide pollution, alleviate hunger and improve human nutrition. This book reviews new information on environmental advantages of plant resistance, transgenic resistance, molecular bases of resistance, and use of molecular markers to map resistance genes.
Publisher: Springer Science & Business Media
ISBN: 9781402037016
Category : Science
Languages : en
Pages : 444
Book Description
Arthropod resistant crops reduce pesticide pollution, alleviate hunger and improve human nutrition. This book reviews new information on environmental advantages of plant resistance, transgenic resistance, molecular bases of resistance, and use of molecular markers to map resistance genes.
Genetic Evaluation for Insect Resistance in Rice
Author: E. A. Heinrichs
Publisher: Int. Rice Res. Inst.
ISBN: 9711041103
Category : Technology & Engineering
Languages : en
Pages : 357
Book Description
Publisher: Int. Rice Res. Inst.
ISBN: 9711041103
Category : Technology & Engineering
Languages : en
Pages : 357
Book Description
Insect Resistance Management
Author: David W. Onstad
Publisher: Academic Press
ISBN: 0080554172
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Insects, mites, and ticks have a long history of evolving resistance to pesticides, host-plant resistance, crop rotation, pathogens, and parasitoids. Insect resistance management (IRM) is the scientific approach to preventing or delaying pest evolution and its negative impacts on agriculture, public health, and veterinary issues. This book provides entomologists, pest management practitioners, developers of new technologies, and regulators with information about the many kinds of pest resistance including behavioral and phenological resistance. Abstract concepts and various case studies provide the reader with the biological and economic knowledge required to manage resistance. No other source has the breadth of coverage of this book: genomics to economics, transgenic insecticidal crops, insecticides, and other pest management tactics such as crop rotation. Dr. David W. Onstad and a team of experts illustrate how IRM becomes efficient, effective and socially acceptable when local, social and economic aspects of the system are considered. Historical lessons are highlighted with new perspectives emphasized, so that future research and management may be informed by past experience, but not constrained by it.* First book in 15 years to provide the history and explore aspects of a variety of stakeholders* Contributors include experts on ecological aspects of IRM, molecular and population genetics, economics, and IRM social issues* Biochemistry and molecular genetics of insecticides presented with an mphasis on past 15 years of research including Cry proteins in transgenic crops* Encourages scientists and stakeholders to implement and coordinate strategies based on local social conditions
Publisher: Academic Press
ISBN: 0080554172
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Insects, mites, and ticks have a long history of evolving resistance to pesticides, host-plant resistance, crop rotation, pathogens, and parasitoids. Insect resistance management (IRM) is the scientific approach to preventing or delaying pest evolution and its negative impacts on agriculture, public health, and veterinary issues. This book provides entomologists, pest management practitioners, developers of new technologies, and regulators with information about the many kinds of pest resistance including behavioral and phenological resistance. Abstract concepts and various case studies provide the reader with the biological and economic knowledge required to manage resistance. No other source has the breadth of coverage of this book: genomics to economics, transgenic insecticidal crops, insecticides, and other pest management tactics such as crop rotation. Dr. David W. Onstad and a team of experts illustrate how IRM becomes efficient, effective and socially acceptable when local, social and economic aspects of the system are considered. Historical lessons are highlighted with new perspectives emphasized, so that future research and management may be informed by past experience, but not constrained by it.* First book in 15 years to provide the history and explore aspects of a variety of stakeholders* Contributors include experts on ecological aspects of IRM, molecular and population genetics, economics, and IRM social issues* Biochemistry and molecular genetics of insecticides presented with an mphasis on past 15 years of research including Cry proteins in transgenic crops* Encourages scientists and stakeholders to implement and coordinate strategies based on local social conditions