Author: Shaoqiang Deng
Publisher: Springer Science & Business Media
ISBN: 1461442443
Category : Mathematics
Languages : en
Pages : 250
Book Description
Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.
Homogeneous Finsler Spaces
Author: Shaoqiang Deng
Publisher: Springer Science & Business Media
ISBN: 1461442443
Category : Mathematics
Languages : en
Pages : 250
Book Description
Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.
Publisher: Springer Science & Business Media
ISBN: 1461442443
Category : Mathematics
Languages : en
Pages : 250
Book Description
Homogeneous Finsler Spaces is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduces the most recent developments in the study of Lie groups and homogeneous Finsler spaces, leading the reader to directions for further development. The book contains many interesting results such as a Finslerian version of the Myers-Steenrod Theorem, the existence theorem for invariant non-Riemannian Finsler metrics on coset spaces, the Berwaldian characterization of globally symmetric Finsler spaces, the construction of examples of reversible non-Berwaldian Finsler spaces with vanishing S-curvature, and a classification of homogeneous Randers spaces with isotropic S-curvature and positive flag curvature. Readers with some background in Lie theory or differential geometry can quickly begin studying problems concerning Lie groups and Finsler geometry.
Differential Geometry of Spray and Finsler Spaces
Author: Zhongmin Shen
Publisher: Springer Science & Business Media
ISBN: 9401597278
Category : Mathematics
Languages : en
Pages : 260
Book Description
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.
Publisher: Springer Science & Business Media
ISBN: 9401597278
Category : Mathematics
Languages : en
Pages : 260
Book Description
In this book we study sprays and Finsler metrics. Roughly speaking, a spray on a manifold consists of compatible systems of second-order ordinary differential equations. A Finsler metric on a manifold is a family of norms in tangent spaces, which vary smoothly with the base point. Every Finsler metric determines a spray by its systems of geodesic equations. Thus, Finsler spaces can be viewed as special spray spaces. On the other hand, every Finsler metric defines a distance function by the length of minimial curves. Thus Finsler spaces can be viewed as regular metric spaces. Riemannian spaces are special regular metric spaces. In 1854, B. Riemann introduced the Riemann curvature for Riemannian spaces in his ground-breaking Habilitationsvortrag. Thereafter the geometry of these special regular metric spaces is named after him. Riemann also mentioned general regular metric spaces, but he thought that there were nothing new in the general case. In fact, it is technically much more difficult to deal with general regular metric spaces. For more than half century, there had been no essential progress in this direction until P. Finsler did his pioneering work in 1918. Finsler studied the variational problems of curves and surfaces in general regular metric spaces. Some difficult problems were solved by him. Since then, such regular metric spaces are called Finsler spaces. Finsler, however, did not go any further to introduce curvatures for regular metric spaces. He switched his research direction to set theory shortly after his graduation.
Lectures On Finsler Geometry
Author: Zhongmin Shen
Publisher: World Scientific
ISBN: 9814491659
Category : Mathematics
Languages : en
Pages : 323
Book Description
In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.
Publisher: World Scientific
ISBN: 9814491659
Category : Mathematics
Languages : en
Pages : 323
Book Description
In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.
Geometry of Submanifolds and Homogeneous Spaces
Author: Andreas Arvanitoyeorgos
Publisher: MDPI
ISBN: 3039280007
Category : Mathematics
Languages : en
Pages : 128
Book Description
The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.
Publisher: MDPI
ISBN: 3039280007
Category : Mathematics
Languages : en
Pages : 128
Book Description
The present Special Issue of Symmetry is devoted to two important areas of global Riemannian geometry, namely submanifold theory and the geometry of Lie groups and homogeneous spaces. Submanifold theory originated from the classical geometry of curves and surfaces. Homogeneous spaces are manifolds that admit a transitive Lie group action, historically related to F. Klein's Erlangen Program and S. Lie's idea to use continuous symmetries in studying differential equations. In this Special Issue, we provide a collection of papers that not only reflect some of the latest advancements in both areas, but also highlight relations between them and the use of common techniques. Applications to other areas of mathematics are also considered.
Homogeneous Finsler Spaces
Author:
Publisher: Springer
ISBN: 9781461442455
Category :
Languages : en
Pages : 256
Book Description
Publisher: Springer
ISBN: 9781461442455
Category :
Languages : en
Pages : 256
Book Description
An Introduction to Riemann-Finsler Geometry
Author: D. Bao
Publisher: Springer Science & Business Media
ISBN: 1461212685
Category : Mathematics
Languages : en
Pages : 453
Book Description
This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.
Publisher: Springer Science & Business Media
ISBN: 1461212685
Category : Mathematics
Languages : en
Pages : 453
Book Description
This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.
Riemann-Finsler Geometry
Author: Shiing-Shen Chern
Publisher: World Scientific
ISBN: 9812383573
Category : Mathematics
Languages : en
Pages : 206
Book Description
Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical. Graduate students and researchers in differential geometry.
Publisher: World Scientific
ISBN: 9812383573
Category : Mathematics
Languages : en
Pages : 206
Book Description
Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical. Graduate students and researchers in differential geometry.
The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology
Author: P.L. Antonelli
Publisher: Springer Science & Business Media
ISBN: 9401581940
Category : Mathematics
Languages : en
Pages : 324
Book Description
The present book has been written by two mathematicians and one physicist: a pure mathematician specializing in Finsler geometry (Makoto Matsumoto), one working in mathematical biology (Peter Antonelli), and a mathematical physicist specializing in information thermodynamics (Roman Ingarden). The main purpose of this book is to present the principles and methods of sprays (path spaces) and Finsler spaces together with examples of applications to physical and life sciences. It is our aim to write an introductory book on Finsler geometry and its applications at a fairly advanced level. It is intended especially for graduate students in pure mathemat ics, science and applied mathematics, but should be also of interest to those pure "Finslerists" who would like to see their subject applied. After more than 70 years of relatively slow development Finsler geometry is now a modern subject with a large body of theorems and techniques and has math ematical content comparable to any field of modern differential geometry. The time has come to say this in full voice, against those who have thought Finsler geometry, because of its computational complexity, is only of marginal interest and with prac tically no interesting applications. Contrary to these outdated fossilized opinions, we believe "the world is Finslerian" in a true sense and we will try to show this in our application in thermodynamics, optics, ecology, evolution and developmental biology. On the other hand, while the complexity of the subject has not disappeared, the modern bundle theoretic approach has increased greatly its understandability.
Publisher: Springer Science & Business Media
ISBN: 9401581940
Category : Mathematics
Languages : en
Pages : 324
Book Description
The present book has been written by two mathematicians and one physicist: a pure mathematician specializing in Finsler geometry (Makoto Matsumoto), one working in mathematical biology (Peter Antonelli), and a mathematical physicist specializing in information thermodynamics (Roman Ingarden). The main purpose of this book is to present the principles and methods of sprays (path spaces) and Finsler spaces together with examples of applications to physical and life sciences. It is our aim to write an introductory book on Finsler geometry and its applications at a fairly advanced level. It is intended especially for graduate students in pure mathemat ics, science and applied mathematics, but should be also of interest to those pure "Finslerists" who would like to see their subject applied. After more than 70 years of relatively slow development Finsler geometry is now a modern subject with a large body of theorems and techniques and has math ematical content comparable to any field of modern differential geometry. The time has come to say this in full voice, against those who have thought Finsler geometry, because of its computational complexity, is only of marginal interest and with prac tically no interesting applications. Contrary to these outdated fossilized opinions, we believe "the world is Finslerian" in a true sense and we will try to show this in our application in thermodynamics, optics, ecology, evolution and developmental biology. On the other hand, while the complexity of the subject has not disappeared, the modern bundle theoretic approach has increased greatly its understandability.
The Geometry of Hamilton and Lagrange Spaces
Author: R. Miron
Publisher: Springer Science & Business Media
ISBN: 0306471353
Category : Mathematics
Languages : en
Pages : 355
Book Description
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.
Publisher: Springer Science & Business Media
ISBN: 0306471353
Category : Mathematics
Languages : en
Pages : 355
Book Description
The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.
Transformation Groups in Differential Geometry
Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3642619819
Category : Mathematics
Languages : en
Pages : 192
Book Description
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.
Publisher: Springer Science & Business Media
ISBN: 3642619819
Category : Mathematics
Languages : en
Pages : 192
Book Description
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.