Author: M. Ram Murty
Publisher: American Mathematical Soc.
ISBN: 1470443996
Category : Mathematics
Languages : en
Pages : 256
Book Description
Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists. This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, the solution of Hilbert's tenth problem does not. What is needed is only some elementary number theory and rudimentary logic. In this book, the authors present the complete proof along with the romantic history that goes with it. Along the way, the reader is introduced to Cantor's transfinite numbers, axiomatic set theory, Turing machines, and Gödel's incompleteness theorems. Copious exercises are included at the end of each chapter to guide the student gently on this ascent. For the advanced student, the final chapter highlights recent developments and suggests future directions. The book is suitable for undergraduates and graduate students. It is essentially self-contained.
Hilbert’s Tenth Problem: An Introduction to Logic, Number Theory, and Computability
Author: M. Ram Murty
Publisher: American Mathematical Soc.
ISBN: 1470443996
Category : Mathematics
Languages : en
Pages : 256
Book Description
Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists. This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, the solution of Hilbert's tenth problem does not. What is needed is only some elementary number theory and rudimentary logic. In this book, the authors present the complete proof along with the romantic history that goes with it. Along the way, the reader is introduced to Cantor's transfinite numbers, axiomatic set theory, Turing machines, and Gödel's incompleteness theorems. Copious exercises are included at the end of each chapter to guide the student gently on this ascent. For the advanced student, the final chapter highlights recent developments and suggests future directions. The book is suitable for undergraduates and graduate students. It is essentially self-contained.
Publisher: American Mathematical Soc.
ISBN: 1470443996
Category : Mathematics
Languages : en
Pages : 256
Book Description
Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists. This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, the solution of Hilbert's tenth problem does not. What is needed is only some elementary number theory and rudimentary logic. In this book, the authors present the complete proof along with the romantic history that goes with it. Along the way, the reader is introduced to Cantor's transfinite numbers, axiomatic set theory, Turing machines, and Gödel's incompleteness theorems. Copious exercises are included at the end of each chapter to guide the student gently on this ascent. For the advanced student, the final chapter highlights recent developments and suggests future directions. The book is suitable for undergraduates and graduate students. It is essentially self-contained.
An Introduction to Mathematical Logic
Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Hilbert's Tenth Problem
Author: Alexandra Shlapentokh
Publisher: Cambridge University Press
ISBN: 9780521833608
Category : Mathematics
Languages : en
Pages : 342
Book Description
Publisher description
Publisher: Cambridge University Press
ISBN: 9780521833608
Category : Mathematics
Languages : en
Pages : 342
Book Description
Publisher description
Hilbert's Tenth Problem
Author: I︠U︡riĭ V. Matii︠a︡sevich
Publisher: MIT Press
ISBN: 9780262132954
Category : Computers
Languages : en
Pages : 296
Book Description
This book presents the full, self-contained negative solution of Hilbert's 10th problem.
Publisher: MIT Press
ISBN: 9780262132954
Category : Computers
Languages : en
Pages : 296
Book Description
This book presents the full, self-contained negative solution of Hilbert's 10th problem.
Modern Mathematical Logic
Author: Joseph Mileti
Publisher: Cambridge University Press
ISBN: 1108968198
Category : Mathematics
Languages : en
Pages : 518
Book Description
This textbook gives a complete and modern introduction to mathematical logic. The author uses contemporary notation, conventions, and perspectives throughout, and emphasizes interactions with the rest of mathematics. In addition to covering the basic concepts of mathematical logic and the fundamental material on completeness, compactness, and incompleteness, it devotes significant space to thorough introductions to the pillars of the modern subject: model theory, set theory, and computability. Requiring only a modest background of undergraduate mathematics, the text can be readily adapted for a variety of one- or two-semester courses at the upper-undergraduate or beginning-graduate level. Numerous examples reinforce the key ideas and illustrate their applications, and a wealth of classroom-tested exercises serve to consolidate readers' understanding. Comprehensive and engaging, this book offers a fresh approach to this enduringly fascinating and important subject.
Publisher: Cambridge University Press
ISBN: 1108968198
Category : Mathematics
Languages : en
Pages : 518
Book Description
This textbook gives a complete and modern introduction to mathematical logic. The author uses contemporary notation, conventions, and perspectives throughout, and emphasizes interactions with the rest of mathematics. In addition to covering the basic concepts of mathematical logic and the fundamental material on completeness, compactness, and incompleteness, it devotes significant space to thorough introductions to the pillars of the modern subject: model theory, set theory, and computability. Requiring only a modest background of undergraduate mathematics, the text can be readily adapted for a variety of one- or two-semester courses at the upper-undergraduate or beginning-graduate level. Numerous examples reinforce the key ideas and illustrate their applications, and a wealth of classroom-tested exercises serve to consolidate readers' understanding. Comprehensive and engaging, this book offers a fresh approach to this enduringly fascinating and important subject.
The Hilbert Challenge
Author: Jeremy Gray
Publisher: Oxford University Press, USA
ISBN: 9780198506515
Category : Mathematics
Languages : en
Pages : 340
Book Description
David Hilbert was arguably the leading mathematician of his generation. He was among the few mathematicians who could reshape mathematics, and was able to because he brought together an impressive technical power and mastery of detail with a vision of where the subject was going and how it should get there. This was the unique combination which he brought to the setting of his famous 23 Problems. Few problems in mathematics have the status of those posed by David Hilbert in 1900. Mathematicians have made their reputations by solving individual ones such as Fermat's last theorem, and several remain unsolved including the Riemann hypotheses, which has eluded all the great minds of this century. A hundred years on, it is timely to take a fresh look at the problems, the man who set them, and the reasons for their lasting impact on the mathematics of the twentieth century. In this fascinating new book, Jeremy Gray and David Rowe consider what has made this the pre-eminent collection of problems in mathematics, what they tell us about what drives mathematicians, and the nature of reputation, influence and power in the world of modern mathematics. The book is written in a clear and lively manner and will appeal both to the general reader with an interest in mathematics and to mathematicians themselves.
Publisher: Oxford University Press, USA
ISBN: 9780198506515
Category : Mathematics
Languages : en
Pages : 340
Book Description
David Hilbert was arguably the leading mathematician of his generation. He was among the few mathematicians who could reshape mathematics, and was able to because he brought together an impressive technical power and mastery of detail with a vision of where the subject was going and how it should get there. This was the unique combination which he brought to the setting of his famous 23 Problems. Few problems in mathematics have the status of those posed by David Hilbert in 1900. Mathematicians have made their reputations by solving individual ones such as Fermat's last theorem, and several remain unsolved including the Riemann hypotheses, which has eluded all the great minds of this century. A hundred years on, it is timely to take a fresh look at the problems, the man who set them, and the reasons for their lasting impact on the mathematics of the twentieth century. In this fascinating new book, Jeremy Gray and David Rowe consider what has made this the pre-eminent collection of problems in mathematics, what they tell us about what drives mathematicians, and the nature of reputation, influence and power in the world of modern mathematics. The book is written in a clear and lively manner and will appeal both to the general reader with an interest in mathematics and to mathematicians themselves.
An Invitation to Mathematical Logic
Author: David Marker
Publisher: Springer Nature
ISBN: 3031553683
Category :
Languages : en
Pages : 359
Book Description
Publisher: Springer Nature
ISBN: 3031553683
Category :
Languages : en
Pages : 359
Book Description
Women in Numbers Europe IV
Author: Ramla Abdellatif
Publisher: Springer Nature
ISBN: 3031521633
Category :
Languages : en
Pages : 378
Book Description
Publisher: Springer Nature
ISBN: 3031521633
Category :
Languages : en
Pages : 378
Book Description
Algebraic Informatics
Author: Dimitrios Poulakis
Publisher: Springer Nature
ISBN: 3031196856
Category : Computers
Languages : en
Pages : 233
Book Description
This book constitutes the proceedings of the 9th International Conference on Algebraic Informatics, CAI 2022, held as virtual event, in October 27–29, 2022. The 2 abstracts, 3 full papers of invited speakers, and 12 contributed papers presented in this volume were carefully reviewed and selected from 17 submissions. The papers contain original and unpublished research; the topics of them lie in automata theory, cryptography, coding theory, DNA computation, computer algebra, and theory of software architectures.
Publisher: Springer Nature
ISBN: 3031196856
Category : Computers
Languages : en
Pages : 233
Book Description
This book constitutes the proceedings of the 9th International Conference on Algebraic Informatics, CAI 2022, held as virtual event, in October 27–29, 2022. The 2 abstracts, 3 full papers of invited speakers, and 12 contributed papers presented in this volume were carefully reviewed and selected from 17 submissions. The papers contain original and unpublished research; the topics of them lie in automata theory, cryptography, coding theory, DNA computation, computer algebra, and theory of software architectures.
Introduction to Mathematical Logic
Author: Elliot Mendelsohn
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.