Author: Wilfried Sieg
Publisher: Oxford University Press
ISBN: 0195372220
Category : Computers
Languages : en
Pages : 452
Book Description
David Hilbert was one of the great mathematicians who expounded the centrality of their subject in human thought. In this collection of essays, Wilfried Sieg frames Hilbert's foundational work, from 1890 to 1939, in a comprehensive way and integrates it with modern proof theoretic investigations.
Hilbert's Programs and Beyond
Author: Wilfried Sieg
Publisher: Oxford University Press
ISBN: 0195372220
Category : Computers
Languages : en
Pages : 452
Book Description
David Hilbert was one of the great mathematicians who expounded the centrality of their subject in human thought. In this collection of essays, Wilfried Sieg frames Hilbert's foundational work, from 1890 to 1939, in a comprehensive way and integrates it with modern proof theoretic investigations.
Publisher: Oxford University Press
ISBN: 0195372220
Category : Computers
Languages : en
Pages : 452
Book Description
David Hilbert was one of the great mathematicians who expounded the centrality of their subject in human thought. In this collection of essays, Wilfried Sieg frames Hilbert's foundational work, from 1890 to 1939, in a comprehensive way and integrates it with modern proof theoretic investigations.
Principia Mathematica
Author: Alfred North Whitehead
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 688
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 688
Book Description
Hilbert’s Program
Author: M. Detlefsen
Publisher: Springer Science & Business Media
ISBN: 9401577315
Category : Philosophy
Languages : en
Pages : 199
Book Description
Hilbert's Program was founded on a concern for the phenomenon of paradox in mathematics. To Hilbert, the paradoxes, which are at once both absurd and irresistible, revealed a deep philosophical truth: namely, that there is a discrepancy between the laws accord ing to which the mind of homo mathematicus works, and the laws governing objective mathematical fact. Mathematical epistemology is, therefore, to be seen as a struggle between a mind that naturally works in one way and a reality that works in another. Knowledge occurs when the two cooperate. Conceived in this way, there are two basic alternatives for mathematical epistemology: a skeptical position which maintains either that mind and reality seldom or never come to agreement, or that we have no very reliable way of telling when they do; and a non-skeptical position which holds that there is significant agree ment between mind and reality, and that their potential discrepan cies can be detected, avoided, and thus kept in check. Of these two, Hilbert clearly embraced the latter, and proposed a program designed to vindicate the epistemological riches represented by our natural, if non-literal, ways of thinking. Brouwer, on the other hand, opted for a position closer (in Hilbert's opinion) to that of the skeptic. Having decided that epistemological purity could come only through sacrifice, he turned his back on his classical heritage to accept a higher calling.
Publisher: Springer Science & Business Media
ISBN: 9401577315
Category : Philosophy
Languages : en
Pages : 199
Book Description
Hilbert's Program was founded on a concern for the phenomenon of paradox in mathematics. To Hilbert, the paradoxes, which are at once both absurd and irresistible, revealed a deep philosophical truth: namely, that there is a discrepancy between the laws accord ing to which the mind of homo mathematicus works, and the laws governing objective mathematical fact. Mathematical epistemology is, therefore, to be seen as a struggle between a mind that naturally works in one way and a reality that works in another. Knowledge occurs when the two cooperate. Conceived in this way, there are two basic alternatives for mathematical epistemology: a skeptical position which maintains either that mind and reality seldom or never come to agreement, or that we have no very reliable way of telling when they do; and a non-skeptical position which holds that there is significant agree ment between mind and reality, and that their potential discrepan cies can be detected, avoided, and thus kept in check. Of these two, Hilbert clearly embraced the latter, and proposed a program designed to vindicate the epistemological riches represented by our natural, if non-literal, ways of thinking. Brouwer, on the other hand, opted for a position closer (in Hilbert's opinion) to that of the skeptic. Having decided that epistemological purity could come only through sacrifice, he turned his back on his classical heritage to accept a higher calling.
Hilbert's Programs and Beyond
Author: Wilfried Sieg
Publisher: Oxford University Press
ISBN: 0199707154
Category : Philosophy
Languages : en
Pages : 452
Book Description
Hilbert's Programs & Beyond presents the foundational work of David Hilbert in a sequence of thematically organized essays. They first trace the roots of Hilbert's work to the radical transformation of mathematics in the 19th century and bring out his pivotal role in creating mathematical logic and proof theory. They then analyze techniques and results of "classical" proof theory as well as their dramatic expansion in modern proof theory. This intellectual experience finally opens horizons for reflection on the nature of mathematics in the 21st century: Sieg articulates his position of reductive structuralism and explores mathematical capacities via computational models.
Publisher: Oxford University Press
ISBN: 0199707154
Category : Philosophy
Languages : en
Pages : 452
Book Description
Hilbert's Programs & Beyond presents the foundational work of David Hilbert in a sequence of thematically organized essays. They first trace the roots of Hilbert's work to the radical transformation of mathematics in the 19th century and bring out his pivotal role in creating mathematical logic and proof theory. They then analyze techniques and results of "classical" proof theory as well as their dramatic expansion in modern proof theory. This intellectual experience finally opens horizons for reflection on the nature of mathematics in the 21st century: Sieg articulates his position of reductive structuralism and explores mathematical capacities via computational models.
Hilbert’s Program
Author: Michael Detlefsen
Publisher: Springer Science & Business Media
ISBN: 9789027721518
Category : Philosophy
Languages : en
Pages : 210
Book Description
Hilbert's Program was founded on a concern for the phenomenon of paradox in mathematics. To Hilbert, the paradoxes, which are at once both absurd and irresistible, revealed a deep philosophical truth: namely, that there is a discrepancy between the laws accord ing to which the mind of homo mathematicus works, and the laws governing objective mathematical fact. Mathematical epistemology is, therefore, to be seen as a struggle between a mind that naturally works in one way and a reality that works in another. Knowledge occurs when the two cooperate. Conceived in this way, there are two basic alternatives for mathematical epistemology: a skeptical position which maintains either that mind and reality seldom or never come to agreement, or that we have no very reliable way of telling when they do; and a non-skeptical position which holds that there is significant agree ment between mind and reality, and that their potential discrepan cies can be detected, avoided, and thus kept in check. Of these two, Hilbert clearly embraced the latter, and proposed a program designed to vindicate the epistemological riches represented by our natural, if non-literal, ways of thinking. Brouwer, on the other hand, opted for a position closer (in Hilbert's opinion) to that of the skeptic. Having decided that epistemological purity could come only through sacrifice, he turned his back on his classical heritage to accept a higher calling.
Publisher: Springer Science & Business Media
ISBN: 9789027721518
Category : Philosophy
Languages : en
Pages : 210
Book Description
Hilbert's Program was founded on a concern for the phenomenon of paradox in mathematics. To Hilbert, the paradoxes, which are at once both absurd and irresistible, revealed a deep philosophical truth: namely, that there is a discrepancy between the laws accord ing to which the mind of homo mathematicus works, and the laws governing objective mathematical fact. Mathematical epistemology is, therefore, to be seen as a struggle between a mind that naturally works in one way and a reality that works in another. Knowledge occurs when the two cooperate. Conceived in this way, there are two basic alternatives for mathematical epistemology: a skeptical position which maintains either that mind and reality seldom or never come to agreement, or that we have no very reliable way of telling when they do; and a non-skeptical position which holds that there is significant agree ment between mind and reality, and that their potential discrepan cies can be detected, avoided, and thus kept in check. Of these two, Hilbert clearly embraced the latter, and proposed a program designed to vindicate the epistemological riches represented by our natural, if non-literal, ways of thinking. Brouwer, on the other hand, opted for a position closer (in Hilbert's opinion) to that of the skeptic. Having decided that epistemological purity could come only through sacrifice, he turned his back on his classical heritage to accept a higher calling.
From Brouwer to Hilbert
Author: Paolo Mancosu
Publisher: Oxford University Press on Demand
ISBN: 9780195096323
Category : Mathematics
Languages : en
Pages : 337
Book Description
Most contemporary work in the foundations of mathematics takes its start from the groundbreaking contributions of, among others, Hilbert, Brouwer, Bernays, and Weyl. This book offers an introduction to the debate on the foundations of mathematics during the 1920s and presents the English reader with a selection of twenty five articles central to the debate which have not been previously translated. It is an ideal text for undergraduate and graduate courses in the philosophy of mathematics.
Publisher: Oxford University Press on Demand
ISBN: 9780195096323
Category : Mathematics
Languages : en
Pages : 337
Book Description
Most contemporary work in the foundations of mathematics takes its start from the groundbreaking contributions of, among others, Hilbert, Brouwer, Bernays, and Weyl. This book offers an introduction to the debate on the foundations of mathematics during the 1920s and presents the English reader with a selection of twenty five articles central to the debate which have not been previously translated. It is an ideal text for undergraduate and graduate courses in the philosophy of mathematics.
Logic's Lost Genius
Author: Eckart Menzler-Trott
Publisher: American Mathematical Soc.
ISBN: 1470428121
Category : Mathematics
Languages : en
Pages : 466
Book Description
Gerhard Gentzen (1909–1945) is the founder of modern structural proof theory. His lasting methods, rules, and structures resulted not only in the technical mathematical discipline called “proof theory” but also in verification programs that are essential in computer science. The appearance, clarity, and elegance of Gentzen's work on natural deduction, the sequent calculus, and ordinal proof theory continue to be impressive even today. The present book gives the first comprehensive, detailed, accurate scientific biography expounding the life and work of Gerhard Gentzen, one of our greatest logicians, until his arrest and death in Prague in 1945. Particular emphasis in the book is put on the conditions of scientific research, in this case mathematical logic, in National Socialist Germany, the ideological fight for “German logic”, and their mutual protagonists. Numerous hitherto unpublished sources, family documents, archival material, interviews, and letters, as well as Gentzen's lectures for the mathematical public, make this book an indispensable source of information on this important mathematician, his work, and his time. The volume is completed by two deep substantial essays by Jan von Plato and Craig Smoryński on Gentzen's proof theory; its relation to the ideas of Hilbert, Brouwer, Weyl, and Gödel; and its development up to the present day. Smoryński explains the Hilbert program in more than the usual slogan form and shows why consistency is important. Von Plato shows in detail the benefits of Gentzen's program. This important book is a self-contained starting point for any work on Gentzen and his logic. The book is accessible to a wide audience with different backgrounds and is suitable for general readers, researchers, students, and teachers.
Publisher: American Mathematical Soc.
ISBN: 1470428121
Category : Mathematics
Languages : en
Pages : 466
Book Description
Gerhard Gentzen (1909–1945) is the founder of modern structural proof theory. His lasting methods, rules, and structures resulted not only in the technical mathematical discipline called “proof theory” but also in verification programs that are essential in computer science. The appearance, clarity, and elegance of Gentzen's work on natural deduction, the sequent calculus, and ordinal proof theory continue to be impressive even today. The present book gives the first comprehensive, detailed, accurate scientific biography expounding the life and work of Gerhard Gentzen, one of our greatest logicians, until his arrest and death in Prague in 1945. Particular emphasis in the book is put on the conditions of scientific research, in this case mathematical logic, in National Socialist Germany, the ideological fight for “German logic”, and their mutual protagonists. Numerous hitherto unpublished sources, family documents, archival material, interviews, and letters, as well as Gentzen's lectures for the mathematical public, make this book an indispensable source of information on this important mathematician, his work, and his time. The volume is completed by two deep substantial essays by Jan von Plato and Craig Smoryński on Gentzen's proof theory; its relation to the ideas of Hilbert, Brouwer, Weyl, and Gödel; and its development up to the present day. Smoryński explains the Hilbert program in more than the usual slogan form and shows why consistency is important. Von Plato shows in detail the benefits of Gentzen's program. This important book is a self-contained starting point for any work on Gentzen and his logic. The book is accessible to a wide audience with different backgrounds and is suitable for general readers, researchers, students, and teachers.
Philosophy of Logic
Author:
Publisher: Elsevier
ISBN: 008046663X
Category : Mathematics
Languages : en
Pages : 1219
Book Description
The papers presented in this volume examine topics of central interest in contemporary philosophy of logic. They include reflections on the nature of logic and its relevance for philosophy today, and explore in depth developments in informal logic and the relation of informal to symbolic logic, mathematical metatheory and the limiting metatheorems, modal logic, many-valued logic, relevance and paraconsistent logic, free logics, extensional v. intensional logics, the logic of fiction, epistemic logic, formal logical and semantic paradoxes, the concept of truth, the formal theory of entailment, objectual and substitutional interpretation of the quantifiers, infinity and domain constraints, the Löwenheim-Skolem theorem and Skolem paradox, vagueness, modal realism v. actualism, counterfactuals and the logic of causation, applications of logic and mathematics to the physical sciences, logically possible worlds and counterpart semantics, and the legacy of Hilbert's program and logicism. The handbook is meant to be both a compendium of new work in symbolic logic and an authoritative resource for students and researchers, a book to be consulted for specific information about recent developments in logic and to be read with pleasure for its technical acumen and philosophical insights.- Written by leading logicians and philosophers- Comprehensive authoritative coverage of all major areas of contemporary research in symbolic logic- Clear, in-depth expositions of technical detail- Progressive organization from general considerations to informal to symbolic logic to nonclassical logics- Presents current work in symbolic logic within a unified framework- Accessible to students, engaging for experts and professionals- Insightful philosophical discussions of all aspects of logic- Useful bibliographies in every chapter
Publisher: Elsevier
ISBN: 008046663X
Category : Mathematics
Languages : en
Pages : 1219
Book Description
The papers presented in this volume examine topics of central interest in contemporary philosophy of logic. They include reflections on the nature of logic and its relevance for philosophy today, and explore in depth developments in informal logic and the relation of informal to symbolic logic, mathematical metatheory and the limiting metatheorems, modal logic, many-valued logic, relevance and paraconsistent logic, free logics, extensional v. intensional logics, the logic of fiction, epistemic logic, formal logical and semantic paradoxes, the concept of truth, the formal theory of entailment, objectual and substitutional interpretation of the quantifiers, infinity and domain constraints, the Löwenheim-Skolem theorem and Skolem paradox, vagueness, modal realism v. actualism, counterfactuals and the logic of causation, applications of logic and mathematics to the physical sciences, logically possible worlds and counterpart semantics, and the legacy of Hilbert's program and logicism. The handbook is meant to be both a compendium of new work in symbolic logic and an authoritative resource for students and researchers, a book to be consulted for specific information about recent developments in logic and to be read with pleasure for its technical acumen and philosophical insights.- Written by leading logicians and philosophers- Comprehensive authoritative coverage of all major areas of contemporary research in symbolic logic- Clear, in-depth expositions of technical detail- Progressive organization from general considerations to informal to symbolic logic to nonclassical logics- Presents current work in symbolic logic within a unified framework- Accessible to students, engaging for experts and professionals- Insightful philosophical discussions of all aspects of logic- Useful bibliographies in every chapter
The Honors Class
Author: Ben Yandell
Publisher: CRC Press
ISBN: 1439864225
Category : Mathematics
Languages : en
Pages : 498
Book Description
This eminently readable book focuses on the people of mathematics and draws the reader into their fascinating world. In a monumental address, given to the International Congress of Mathematicians in Paris in 1900, David Hilbert, perhaps the most respected mathematician of his time, developed a blueprint for mathematical research in the new century.
Publisher: CRC Press
ISBN: 1439864225
Category : Mathematics
Languages : en
Pages : 498
Book Description
This eminently readable book focuses on the people of mathematics and draws the reader into their fascinating world. In a monumental address, given to the International Congress of Mathematicians in Paris in 1900, David Hilbert, perhaps the most respected mathematician of his time, developed a blueprint for mathematical research in the new century.
Internal Logic
Author: Y. Gauthier
Publisher: Springer Science & Business Media
ISBN: 9781402006890
Category : Mathematics
Languages : en
Pages : 276
Book Description
Internal logic is the logic of content. The content is here arithmetic and the emphasis is on a constructive logic of arithmetic (arithmetical logic). Kronecker's general arithmetic of forms (polynomials) together with Fermat's infinite descent is put to use in an internal consistency proof. The view is developed in the context of a radical arithmetization of mathematics and logic and covers the many-faceted heritage of Kronecker's work, which includes not only Hilbert, but also Frege, Cantor, Dedekind, Husserl and Brouwer. The book will be of primary interest to logicians, philosophers and mathematicians interested in the foundations of mathematics and the philosophical implications of constructivist mathematics. It may also be of interest to historians, since it covers a fifty-year period, from 1880 to 1930, which has been crucial in the foundational debates and their repercussions on the contemporary scene.
Publisher: Springer Science & Business Media
ISBN: 9781402006890
Category : Mathematics
Languages : en
Pages : 276
Book Description
Internal logic is the logic of content. The content is here arithmetic and the emphasis is on a constructive logic of arithmetic (arithmetical logic). Kronecker's general arithmetic of forms (polynomials) together with Fermat's infinite descent is put to use in an internal consistency proof. The view is developed in the context of a radical arithmetization of mathematics and logic and covers the many-faceted heritage of Kronecker's work, which includes not only Hilbert, but also Frege, Cantor, Dedekind, Husserl and Brouwer. The book will be of primary interest to logicians, philosophers and mathematicians interested in the foundations of mathematics and the philosophical implications of constructivist mathematics. It may also be of interest to historians, since it covers a fifty-year period, from 1880 to 1930, which has been crucial in the foundational debates and their repercussions on the contemporary scene.