Author: Joan Roselló
Publisher: Cambridge Scholars Publishing
ISBN: 152752762X
Category : Mathematics
Languages : en
Pages : 295
Book Description
David Hilbert is one of the outstanding mathematicians of the twentieth century and probably the most influential. This book highlights Hilbert’s contributions to mathematics, putting them in their historical, social and cultural context. In doing so, particular attention is paid to Hilbert’s axiomatic method and his proposal for the foundations of mathematics, the so-called Hilbert’s program. The book also discusses the development of algebraic number theory, the theory of integral equations, modern algebra and the structural image of mathematics. In addition, it considers the famous list of Mathematical Problems presented in Paris in 1900, the mathematical tradition of the University of Göttingen, the great debate on the foundations of mathematics in the twenties between formalists and intuitionists, and, finally, Hilbert’s work on the theory of relativity and the foundations of quantum mechanics. The book will primarily appeal to an academic audience, although it will also be of interest to general-interest science readers.
Hilbert, Göttingen and the Development of Modern Mathematics
Author: Joan Roselló
Publisher: Cambridge Scholars Publishing
ISBN: 152752762X
Category : Mathematics
Languages : en
Pages : 295
Book Description
David Hilbert is one of the outstanding mathematicians of the twentieth century and probably the most influential. This book highlights Hilbert’s contributions to mathematics, putting them in their historical, social and cultural context. In doing so, particular attention is paid to Hilbert’s axiomatic method and his proposal for the foundations of mathematics, the so-called Hilbert’s program. The book also discusses the development of algebraic number theory, the theory of integral equations, modern algebra and the structural image of mathematics. In addition, it considers the famous list of Mathematical Problems presented in Paris in 1900, the mathematical tradition of the University of Göttingen, the great debate on the foundations of mathematics in the twenties between formalists and intuitionists, and, finally, Hilbert’s work on the theory of relativity and the foundations of quantum mechanics. The book will primarily appeal to an academic audience, although it will also be of interest to general-interest science readers.
Publisher: Cambridge Scholars Publishing
ISBN: 152752762X
Category : Mathematics
Languages : en
Pages : 295
Book Description
David Hilbert is one of the outstanding mathematicians of the twentieth century and probably the most influential. This book highlights Hilbert’s contributions to mathematics, putting them in their historical, social and cultural context. In doing so, particular attention is paid to Hilbert’s axiomatic method and his proposal for the foundations of mathematics, the so-called Hilbert’s program. The book also discusses the development of algebraic number theory, the theory of integral equations, modern algebra and the structural image of mathematics. In addition, it considers the famous list of Mathematical Problems presented in Paris in 1900, the mathematical tradition of the University of Göttingen, the great debate on the foundations of mathematics in the twenties between formalists and intuitionists, and, finally, Hilbert’s work on the theory of relativity and the foundations of quantum mechanics. The book will primarily appeal to an academic audience, although it will also be of interest to general-interest science readers.
A Richer Picture of Mathematics
Author: David E. Rowe
Publisher: Springer
ISBN: 3319678191
Category : Mathematics
Languages : en
Pages : 448
Book Description
Historian David E. Rowe captures the rich tapestry of mathematical creativity in this collection of essays from the “Years Ago” column of The Mathematical Intelligencer. With topics ranging from ancient Greek mathematics to modern relativistic cosmology, this collection conveys the impetus and spirit of Rowe’s various and many-faceted contributions to the history of mathematics. Centered on the Göttingen mathematical tradition, these stories illuminate important facets of mathematical activity often overlooked in other accounts. Six sections place the essays in chronological and thematic order, beginning with new introductions that contextualize each section. The essays that follow recount episodes relating to the section’s overall theme. All of the essays in this collection, with the exception of two, appeared over the course of more than 30 years in The Mathematical Intelligencer. Based largely on archival and primary sources, these vignettes offer unusual insights into behind-the-scenes events. Taken together, they aim to show how Göttingen managed to attract an extraordinary array of talented individuals, several of whom contributed to the development of a new mathematical culture during the first decades of the twentieth century.
Publisher: Springer
ISBN: 3319678191
Category : Mathematics
Languages : en
Pages : 448
Book Description
Historian David E. Rowe captures the rich tapestry of mathematical creativity in this collection of essays from the “Years Ago” column of The Mathematical Intelligencer. With topics ranging from ancient Greek mathematics to modern relativistic cosmology, this collection conveys the impetus and spirit of Rowe’s various and many-faceted contributions to the history of mathematics. Centered on the Göttingen mathematical tradition, these stories illuminate important facets of mathematical activity often overlooked in other accounts. Six sections place the essays in chronological and thematic order, beginning with new introductions that contextualize each section. The essays that follow recount episodes relating to the section’s overall theme. All of the essays in this collection, with the exception of two, appeared over the course of more than 30 years in The Mathematical Intelligencer. Based largely on archival and primary sources, these vignettes offer unusual insights into behind-the-scenes events. Taken together, they aim to show how Göttingen managed to attract an extraordinary array of talented individuals, several of whom contributed to the development of a new mathematical culture during the first decades of the twentieth century.
Development Of Mathematics Between The World Wars, The: Case Studies, Examples And Analyses
Author: Martina Becvarova
Publisher: World Scientific
ISBN: 1786349329
Category : Mathematics
Languages : en
Pages : 623
Book Description
The Development of Mathematics Between the World Wars traces the transformation of scientific life within mathematical communities during the interwar period in Central and Eastern Europe, specifically in Germany, Russia, Poland, Hungary, and Czechoslovakia. Throughout the book, in-depth mathematical analyses and examples are included for the benefit of the reader.World War I heavily affected academic life. In European countries, many talented researchers and students were killed in action and scientific activities were halted to resume only in the postwar years. However, this inhibition turned out to be a catalyst for the birth of a new generation of mathematicians, for the emergence of new ideas and theories and for the surprising creation of new and outstanding scientific schools.The final four chapters are not restricted to Central and Eastern Europe and deal with the development of mathematics between World War I and World War II. After describing the general state of mathematics at the end of the 19th century and the first third of the 20th century, three case studies dealing with selected mathematical disciplines are presented (set theory, potential theory, combinatorics), in a way accessible to a broad audience of mathematicians as well as historians of mathematics.
Publisher: World Scientific
ISBN: 1786349329
Category : Mathematics
Languages : en
Pages : 623
Book Description
The Development of Mathematics Between the World Wars traces the transformation of scientific life within mathematical communities during the interwar period in Central and Eastern Europe, specifically in Germany, Russia, Poland, Hungary, and Czechoslovakia. Throughout the book, in-depth mathematical analyses and examples are included for the benefit of the reader.World War I heavily affected academic life. In European countries, many talented researchers and students were killed in action and scientific activities were halted to resume only in the postwar years. However, this inhibition turned out to be a catalyst for the birth of a new generation of mathematicians, for the emergence of new ideas and theories and for the surprising creation of new and outstanding scientific schools.The final four chapters are not restricted to Central and Eastern Europe and deal with the development of mathematics between World War I and World War II. After describing the general state of mathematics at the end of the 19th century and the first third of the 20th century, three case studies dealing with selected mathematical disciplines are presented (set theory, potential theory, combinatorics), in a way accessible to a broad audience of mathematicians as well as historians of mathematics.
The Foundations of Geometry
Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Recollections of a Jewish Mathematician in Germany
Author: Abraham A. Fraenkel
Publisher: Birkhäuser
ISBN: 3319308475
Category : Mathematics
Languages : en
Pages : 248
Book Description
Abraham A. Fraenkel was a world-renowned mathematician in pre–Second World War Germany, whose work on set theory was fundamental to the development of modern mathematics. A friend of Albert Einstein, he knew many of the era’s acclaimed mathematicians personally. He moved to Israel (then Palestine under the British Mandate) in the early 1930s. In his autobiography Fraenkel describes his early years growing up as an Orthodox Jew in Germany and his development as a mathematician at the beginning of the twentieth century. This memoir, originally written in German in the 1960s, has now been translated into English, with an additional chapter covering the period from 1933 until his death in 1965 written by the editor, Jiska Cohen-Mansfield. Fraenkel describes the world of mathematics in Germany in the first half of the twentieth century, its origins and development, the systems influencing it, and its demise. He also paints a unique picture of the complex struggles within the world of Orthodox Jewry in Germany. In his personal life, Fraenkel merged these two worlds during periods of turmoil including the two world wars and the establishment of the state of Israel. Including a new foreword by Menachem Magidor Foreword to the 1967 German edition by Yehoshua Bar-Hillel
Publisher: Birkhäuser
ISBN: 3319308475
Category : Mathematics
Languages : en
Pages : 248
Book Description
Abraham A. Fraenkel was a world-renowned mathematician in pre–Second World War Germany, whose work on set theory was fundamental to the development of modern mathematics. A friend of Albert Einstein, he knew many of the era’s acclaimed mathematicians personally. He moved to Israel (then Palestine under the British Mandate) in the early 1930s. In his autobiography Fraenkel describes his early years growing up as an Orthodox Jew in Germany and his development as a mathematician at the beginning of the twentieth century. This memoir, originally written in German in the 1960s, has now been translated into English, with an additional chapter covering the period from 1933 until his death in 1965 written by the editor, Jiska Cohen-Mansfield. Fraenkel describes the world of mathematics in Germany in the first half of the twentieth century, its origins and development, the systems influencing it, and its demise. He also paints a unique picture of the complex struggles within the world of Orthodox Jewry in Germany. In his personal life, Fraenkel merged these two worlds during periods of turmoil including the two world wars and the establishment of the state of Israel. Including a new foreword by Menachem Magidor Foreword to the 1967 German edition by Yehoshua Bar-Hillel
Development of Mathematics in the 19th Century
Author: Félix Klein
Publisher: Math Science Press
ISBN: 9780915692286
Category : Mathematics
Languages : en
Pages : 630
Book Description
Publisher: Math Science Press
ISBN: 9780915692286
Category : Mathematics
Languages : en
Pages : 630
Book Description
The Hilbert Challenge
Author: Jeremy Gray
Publisher: Oxford University Press, USA
ISBN: 9780198506515
Category : Mathematics
Languages : en
Pages : 340
Book Description
David Hilbert was arguably the leading mathematician of his generation. He was among the few mathematicians who could reshape mathematics, and was able to because he brought together an impressive technical power and mastery of detail with a vision of where the subject was going and how it should get there. This was the unique combination which he brought to the setting of his famous 23 Problems. Few problems in mathematics have the status of those posed by David Hilbert in 1900. Mathematicians have made their reputations by solving individual ones such as Fermat's last theorem, and several remain unsolved including the Riemann hypotheses, which has eluded all the great minds of this century. A hundred years on, it is timely to take a fresh look at the problems, the man who set them, and the reasons for their lasting impact on the mathematics of the twentieth century. In this fascinating new book, Jeremy Gray and David Rowe consider what has made this the pre-eminent collection of problems in mathematics, what they tell us about what drives mathematicians, and the nature of reputation, influence and power in the world of modern mathematics. The book is written in a clear and lively manner and will appeal both to the general reader with an interest in mathematics and to mathematicians themselves.
Publisher: Oxford University Press, USA
ISBN: 9780198506515
Category : Mathematics
Languages : en
Pages : 340
Book Description
David Hilbert was arguably the leading mathematician of his generation. He was among the few mathematicians who could reshape mathematics, and was able to because he brought together an impressive technical power and mastery of detail with a vision of where the subject was going and how it should get there. This was the unique combination which he brought to the setting of his famous 23 Problems. Few problems in mathematics have the status of those posed by David Hilbert in 1900. Mathematicians have made their reputations by solving individual ones such as Fermat's last theorem, and several remain unsolved including the Riemann hypotheses, which has eluded all the great minds of this century. A hundred years on, it is timely to take a fresh look at the problems, the man who set them, and the reasons for their lasting impact on the mathematics of the twentieth century. In this fascinating new book, Jeremy Gray and David Rowe consider what has made this the pre-eminent collection of problems in mathematics, what they tell us about what drives mathematicians, and the nature of reputation, influence and power in the world of modern mathematics. The book is written in a clear and lively manner and will appeal both to the general reader with an interest in mathematics and to mathematicians themselves.
Circles Disturbed
Author: Apostolos Doxiadis
Publisher: Princeton University Press
ISBN: 1400842689
Category : Mathematics
Languages : en
Pages : 593
Book Description
Why narrative is essential to mathematics Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier—"Don't disturb my circles"—words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds—stories representing the way we act and interact, and theorems giving us pure thought, distilled from the hustle and bustle of reality. Yet, though the voices of stories and theorems seem totally different, they share profound connections and similarities. A book unlike any other, Circles Disturbed delves into topics such as the way in which historical and biographical narratives shape our understanding of mathematics and mathematicians, the development of "myths of origins" in mathematics, the structure and importance of mathematical dreams, the role of storytelling in the formation of mathematical intuitions, the ways mathematics helps us organize the way we think about narrative structure, and much more. In addition to the editors, the contributors are Amir Alexander, David Corfield, Peter Galison, Timothy Gowers, Michael Harris, David Herman, Federica La Nave, G.E.R. Lloyd, Uri Margolin, Colin McLarty, Jan Christoph Meister, Arkady Plotnitsky, and Bernard Teissier.
Publisher: Princeton University Press
ISBN: 1400842689
Category : Mathematics
Languages : en
Pages : 593
Book Description
Why narrative is essential to mathematics Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier—"Don't disturb my circles"—words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds—stories representing the way we act and interact, and theorems giving us pure thought, distilled from the hustle and bustle of reality. Yet, though the voices of stories and theorems seem totally different, they share profound connections and similarities. A book unlike any other, Circles Disturbed delves into topics such as the way in which historical and biographical narratives shape our understanding of mathematics and mathematicians, the development of "myths of origins" in mathematics, the structure and importance of mathematical dreams, the role of storytelling in the formation of mathematical intuitions, the ways mathematics helps us organize the way we think about narrative structure, and much more. In addition to the editors, the contributors are Amir Alexander, David Corfield, Peter Galison, Timothy Gowers, Michael Harris, David Herman, Federica La Nave, G.E.R. Lloyd, Uri Margolin, Colin McLarty, Jan Christoph Meister, Arkady Plotnitsky, and Bernard Teissier.
Hilbert-Courant
Author: Constance Reid
Publisher: Springer Science & Business Media
ISBN: 9780387962566
Category : Biography & Autobiography
Languages : en
Pages : 620
Book Description
I am very pleased that my books about David Hilbert, published in 1970, and Richard Courant, published in 1976, are now being issued by Springer Verlag in a single volume. I have always felt that they belonged together, Courant being, as I have written, the natural and necessary sequel to Hilbert the rest of the story. To make the two volumes more compatible when published as one, we have combined and brought up to date the indexes of names and dates. U nfortu nately we have had to omit Hermann Weyl's article on "David Hilbert and his mathematical work," but the interested reader can always find it in the hard back edition of Hilbert and in Weyl's collected papers. At the request of a number of readers we have included a listing of all of Hilbert's famous Paris problems. It was, of course, inevitable that we would give the resulting joint volume the title Hilbert-Courant.
Publisher: Springer Science & Business Media
ISBN: 9780387962566
Category : Biography & Autobiography
Languages : en
Pages : 620
Book Description
I am very pleased that my books about David Hilbert, published in 1970, and Richard Courant, published in 1976, are now being issued by Springer Verlag in a single volume. I have always felt that they belonged together, Courant being, as I have written, the natural and necessary sequel to Hilbert the rest of the story. To make the two volumes more compatible when published as one, we have combined and brought up to date the indexes of names and dates. U nfortu nately we have had to omit Hermann Weyl's article on "David Hilbert and his mathematical work," but the interested reader can always find it in the hard back edition of Hilbert and in Weyl's collected papers. At the request of a number of readers we have included a listing of all of Hilbert's famous Paris problems. It was, of course, inevitable that we would give the resulting joint volume the title Hilbert-Courant.
Establishing Quantum Physics in Göttingen
Author: Arne Schirrmacher
Publisher: Springer
ISBN: 3030227278
Category : Science
Languages : en
Pages : 128
Book Description
Quantum mechanics – the grandiose theory that describes nature down to the submicroscopic level – was first formulated in Göttingen in 1925. How did this come about and why is it that Göttingen became the pre-eminent location for a revolution in physics? This book is the first to investigate the wide range of factors that were pivotal for quantum physics to be established in Göttingen. These include the process of generational change of physics professors, the hopes of mathematicians seeking new fields of research, and a new understanding of the interplay of experiment, theory and philosophy. The other books in the four-volume collection address the beginnings of quantum physics research at Copenhagen, Berlin, and Munich. These works emerged from an expansive study on the quantum revolution as a major transformation of physical knowledge undertaken by the Max Planck Institute for the History of Science and the Fritz Haber Institute (2006–2012). For more on this project, see the dedicated Feature Story, The Networks of Early Quantum Theory, at the Max Planck Institute for the History of Science, https://www.mpiwg-berlin.mpg.de/feature-story/networks-early-quantum-theory.
Publisher: Springer
ISBN: 3030227278
Category : Science
Languages : en
Pages : 128
Book Description
Quantum mechanics – the grandiose theory that describes nature down to the submicroscopic level – was first formulated in Göttingen in 1925. How did this come about and why is it that Göttingen became the pre-eminent location for a revolution in physics? This book is the first to investigate the wide range of factors that were pivotal for quantum physics to be established in Göttingen. These include the process of generational change of physics professors, the hopes of mathematicians seeking new fields of research, and a new understanding of the interplay of experiment, theory and philosophy. The other books in the four-volume collection address the beginnings of quantum physics research at Copenhagen, Berlin, and Munich. These works emerged from an expansive study on the quantum revolution as a major transformation of physical knowledge undertaken by the Max Planck Institute for the History of Science and the Fritz Haber Institute (2006–2012). For more on this project, see the dedicated Feature Story, The Networks of Early Quantum Theory, at the Max Planck Institute for the History of Science, https://www.mpiwg-berlin.mpg.de/feature-story/networks-early-quantum-theory.