Author: Anthony Joseph
Publisher: Springer Science & Business Media
ISBN: 0817682740
Category : Mathematics
Languages : en
Pages : 236
Book Description
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Highlights in Lie Algebraic Methods
Author: Anthony Joseph
Publisher: Springer Science & Business Media
ISBN: 0817682740
Category : Mathematics
Languages : en
Pages : 236
Book Description
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Publisher: Springer Science & Business Media
ISBN: 0817682740
Category : Mathematics
Languages : en
Pages : 236
Book Description
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Representations and Nilpotent Orbits of Lie Algebraic Systems
Author: Maria Gorelik
Publisher: Springer Nature
ISBN: 3030235319
Category : Mathematics
Languages : en
Pages : 563
Book Description
This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.
Publisher: Springer Nature
ISBN: 3030235319
Category : Mathematics
Languages : en
Pages : 563
Book Description
This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.
Highlights in Lie Algebraic Methods
Author:
Publisher: Springer
ISBN: 9780817682750
Category :
Languages : en
Pages : 244
Book Description
Publisher: Springer
ISBN: 9780817682750
Category :
Languages : en
Pages : 244
Book Description
Introduction to Lie Algebras and Representation Theory
Author: J.E. Humphreys
Publisher: Springer Science & Business Media
ISBN: 1461263980
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Publisher: Springer Science & Business Media
ISBN: 1461263980
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Highlights in Lie Algebraic Methods
Author: Anthony Joseph
Publisher: Birkhäuser
ISBN: 9780817682736
Category : Mathematics
Languages : en
Pages : 227
Book Description
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Publisher: Birkhäuser
ISBN: 9780817682736
Category : Mathematics
Languages : en
Pages : 227
Book Description
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Semi-Simple Lie Algebras and Their Representations
Author: Robert N. Cahn
Publisher: Courier Corporation
ISBN: 0486150313
Category : Mathematics
Languages : en
Pages : 180
Book Description
Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.
Publisher: Courier Corporation
ISBN: 0486150313
Category : Mathematics
Languages : en
Pages : 180
Book Description
Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.
Algebraic and Analytic Methods in Representation Theory
Author:
Publisher: Elsevier
ISBN: 0080526950
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field
Publisher: Elsevier
ISBN: 0080526950
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field
A Survey of Lie Groups and Lie Algebras with Applications and Computational Methods
Author: Johan G. F. Belinfante
Publisher: SIAM
ISBN: 9781611971330
Category : Mathematics
Languages : en
Pages : 175
Book Description
Introduces the concepts and methods of the Lie theory in a form accessible to the non-specialist by keeping mathematical prerequisites to a minimum. Although the authors have concentrated on presenting results while omitting most of the proofs, they have compensated for these omissions by including many references to the original literature. Their treatment is directed toward the reader seeking a broad view of the subject rather than elaborate information about technical details. Illustrations of various points of the Lie theory itself are found throughout the book in material on applications. In this reprint edition, the authors have resisted the temptation of including additional topics. Except for correcting a few minor misprints, the character of the book, especially its focus on classical representation theory and its computational aspects, has not been changed.
Publisher: SIAM
ISBN: 9781611971330
Category : Mathematics
Languages : en
Pages : 175
Book Description
Introduces the concepts and methods of the Lie theory in a form accessible to the non-specialist by keeping mathematical prerequisites to a minimum. Although the authors have concentrated on presenting results while omitting most of the proofs, they have compensated for these omissions by including many references to the original literature. Their treatment is directed toward the reader seeking a broad view of the subject rather than elaborate information about technical details. Illustrations of various points of the Lie theory itself are found throughout the book in material on applications. In this reprint edition, the authors have resisted the temptation of including additional topics. Except for correcting a few minor misprints, the character of the book, especially its focus on classical representation theory and its computational aspects, has not been changed.
Crystal Bases: Representations And Combinatorics
Author: Daniel Bump
Publisher: World Scientific Publishing Company
ISBN: 9814733466
Category : Mathematics
Languages : en
Pages : 292
Book Description
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
Publisher: World Scientific Publishing Company
ISBN: 9814733466
Category : Mathematics
Languages : en
Pages : 292
Book Description
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1
Author: Vladimir Dobrev
Publisher: Springer
ISBN: 9811327157
Category : Mathematics
Languages : en
Pages : 419
Book Description
This book is the first volume of proceedings from the joint conference X International Symposium “Quantum Theory and Symmetries” (QTS-X) and XII International Workshop “Lie Theory and Its Applications in Physics” (LT-XII), held on 19–25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place for mathematicians and theoretical and mathematical physicists. In dividing the material between the two volumes, the Editor has sought to select papers that are more oriented toward mathematics for the first volume, and those focusing more on physics for the second. However, this division is relative, since many papers are equally suitable for either volume. The topics addressed in this volume represent the latest trends in the fields covered by the joint conferences: representation theory, integrability, entanglement, quantum groups, number theory, conformal geometry, quantum affine superalgebras, noncommutative geometry. Further, they present various mathematical results: on minuscule modules, symmetry breaking operators, Kashiwara crystals, meta-conformal invariance, the superintegrable Zernike system.
Publisher: Springer
ISBN: 9811327157
Category : Mathematics
Languages : en
Pages : 419
Book Description
This book is the first volume of proceedings from the joint conference X International Symposium “Quantum Theory and Symmetries” (QTS-X) and XII International Workshop “Lie Theory and Its Applications in Physics” (LT-XII), held on 19–25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place for mathematicians and theoretical and mathematical physicists. In dividing the material between the two volumes, the Editor has sought to select papers that are more oriented toward mathematics for the first volume, and those focusing more on physics for the second. However, this division is relative, since many papers are equally suitable for either volume. The topics addressed in this volume represent the latest trends in the fields covered by the joint conferences: representation theory, integrability, entanglement, quantum groups, number theory, conformal geometry, quantum affine superalgebras, noncommutative geometry. Further, they present various mathematical results: on minuscule modules, symmetry breaking operators, Kashiwara crystals, meta-conformal invariance, the superintegrable Zernike system.