Higher Mathematics for Physics and Engineering

Higher Mathematics for Physics and Engineering PDF Author: Hiroyuki Shima
Publisher: Springer Science & Business Media
ISBN: 3540878645
Category : Science
Languages : en
Pages : 693

Get Book Here

Book Description
Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

Higher Mathematics for Physics and Engineering

Higher Mathematics for Physics and Engineering PDF Author: Hiroyuki Shima
Publisher: Springer Science & Business Media
ISBN: 3540878645
Category : Science
Languages : en
Pages : 693

Get Book Here

Book Description
Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering PDF Author: Kenneth Franklin Riley
Publisher:
ISBN:
Category :
Languages : en
Pages : 1008

Get Book Here

Book Description


Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I PDF Author: Carl M. Bender
Publisher: Springer Science & Business Media
ISBN: 1475730691
Category : Mathematics
Languages : en
Pages : 605

Get Book Here

Book Description
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.

A Concise Handbook of Mathematics, Physics, and Engineering Sciences

A Concise Handbook of Mathematics, Physics, and Engineering Sciences PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1439806403
Category : Mathematics
Languages : en
Pages : 1080

Get Book Here

Book Description
A Concise Handbook of Mathematics, Physics, and Engineering Sciences takes a practical approach to the basic notions, formulas, equations, problems, theorems, methods, and laws that most frequently occur in scientific and engineering applications and university education. The authors pay special attention to issues that many engineers and students

Higher Math for Beginners

Higher Math for Beginners PDF Author: Y. B. Zeldovich
Publisher: Prentice Hall
ISBN: 9780133876482
Category : Mathematics
Languages : en
Pages : 560

Get Book Here

Book Description


Advanced Mathematics for Engineering Students

Advanced Mathematics for Engineering Students PDF Author: Brent J. Lewis
Publisher: Butterworth-Heinemann
ISBN: 0128236825
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)

Recent Advances in Engineering Mathematics and Physics

Recent Advances in Engineering Mathematics and Physics PDF Author: Mohamed Hesham Farouk
Publisher: Springer Nature
ISBN: 3030398471
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
This book gathers the proceedings of the 4th conference on Recent Advances in Engineering Math. & Physics (RAEMP 2019), which took place in Cairo, Egypt in December 2019. This international and interdisciplinary conference highlights essential research and developments in the field of Engineering Mathematics and Physics and related technologies and applications. The proceedings is organized to follow the main tracks of the conference: Advanced computational techniques in engineering and sciences; computational intelligence; photonics; physical measurements and big data analytics; physics and nano-technologies; and optimization and mathematical analysis.

Mathematics for Physics

Mathematics for Physics PDF Author: Michael Stone
Publisher: Cambridge University Press
ISBN: 1139480618
Category : Science
Languages : en
Pages : 821

Get Book Here

Book Description
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

Advanced Mathematics for Engineering and Science

Advanced Mathematics for Engineering and Science PDF Author: Wenfang Chen
Publisher: World Scientific
ISBN: 9789812382924
Category : Mathematics
Languages : en
Pages : 902

Get Book Here

Book Description
The book comprises ten chapters, Each chapter contains serveral soved problems clarifying the introduced concepts. Some of the examples are taken from the recent literature and serve to illustrate the applications in various fields of engineering and science. At the end of each chapter, there are assignment problems with two levels of difficulty. A list of references is provided at the end of the book. This book is the product of a close collaboration between two mathematicians and an engineer. The engineer has been helpful in pinpointing the problems which engineering students encounter in books written by mathematicians. Contents: Review of Calculus and Ordinary Differential Equations; Series Solutions and Special Functions; Complex Variables; Vector and Tensor Analysis; Partial Differential Equations I; Partial Differential Equations II; Numerical Methods; Numerical Solution of Partial Differential Equations; Calculus of Variations; Special Topics. Readership: Upper level undergraduates, graduate students and researchers in mathematical modeling, mathematical physics and numerical &computational mathematics.

Advanced Engineering Mathematics

Advanced Engineering Mathematics PDF Author: Dennis G. Zill
Publisher: Jones & Bartlett Learning
ISBN: 9780763745912
Category : Mathematics
Languages : en
Pages : 1060

Get Book Here

Book Description
Thoroughly Updated, Zill'S Advanced Engineering Mathematics, Third Edition Is A Compendium Of Many Mathematical Topics For Students Planning A Career In Engineering Or The Sciences. A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0