Author: Toshio Ando
Publisher: Springer Nature
ISBN: 3662647850
Category : Science
Languages : en
Pages : 327
Book Description
This first book on high-speed atomic force microscopy (HS-AFM) is intended for students and biologists who want to use HS-AFM in their research. It provides straightforward explanations of the principle and techniques of AFM and HS-AFM. Numerous examples of HS-AFM studies on proteins demonstrate how to apply this new form of microscopy to specific biological problems. Several precautions for successful imaging and the preparation of cantilever tips and substrate surfaces will greatly benefit first-time users of HS-AFM. In turn, the instrumentation techniques detailed in Chapter 4 can be skipped, but will be useful for engineers and scientists who want to develop the next generation of high-speed scanning probe microscopes for biology. The book is intended to facilitate the first-time use of this new technique, and to inspire students and researchers to tackle their own specific biological problems by directly observing dynamic events occurring in the nanoscopic world. Microscopy in biology has recently entered a new era with the advent of high-speed atomic force microscopy (HS-AFM). Unlike optical microscopy, electron microscopy, and conventional slow AFM, it allows us to directly observe biological molecules in physiological environments. Molecular “movies” created using HS-AFM can directly reveal how molecules behave and operate, without the need for subsequent complex analyses and roundabout interpretations. It also allows us to directly monitor morphological change in live cells, and dynamic molecular events occurring on the surfaces of living bacteria and intracellular organelles. As HS-AFM instruments were recently commercialized, in the near future HS-AFM is expected to become a common tool in biology, and will enhance and accelerate our understanding of biological phenomena.
High-Speed Atomic Force Microscopy in Biology
Author: Toshio Ando
Publisher: Springer Nature
ISBN: 3662647850
Category : Science
Languages : en
Pages : 327
Book Description
This first book on high-speed atomic force microscopy (HS-AFM) is intended for students and biologists who want to use HS-AFM in their research. It provides straightforward explanations of the principle and techniques of AFM and HS-AFM. Numerous examples of HS-AFM studies on proteins demonstrate how to apply this new form of microscopy to specific biological problems. Several precautions for successful imaging and the preparation of cantilever tips and substrate surfaces will greatly benefit first-time users of HS-AFM. In turn, the instrumentation techniques detailed in Chapter 4 can be skipped, but will be useful for engineers and scientists who want to develop the next generation of high-speed scanning probe microscopes for biology. The book is intended to facilitate the first-time use of this new technique, and to inspire students and researchers to tackle their own specific biological problems by directly observing dynamic events occurring in the nanoscopic world. Microscopy in biology has recently entered a new era with the advent of high-speed atomic force microscopy (HS-AFM). Unlike optical microscopy, electron microscopy, and conventional slow AFM, it allows us to directly observe biological molecules in physiological environments. Molecular “movies” created using HS-AFM can directly reveal how molecules behave and operate, without the need for subsequent complex analyses and roundabout interpretations. It also allows us to directly monitor morphological change in live cells, and dynamic molecular events occurring on the surfaces of living bacteria and intracellular organelles. As HS-AFM instruments were recently commercialized, in the near future HS-AFM is expected to become a common tool in biology, and will enhance and accelerate our understanding of biological phenomena.
Publisher: Springer Nature
ISBN: 3662647850
Category : Science
Languages : en
Pages : 327
Book Description
This first book on high-speed atomic force microscopy (HS-AFM) is intended for students and biologists who want to use HS-AFM in their research. It provides straightforward explanations of the principle and techniques of AFM and HS-AFM. Numerous examples of HS-AFM studies on proteins demonstrate how to apply this new form of microscopy to specific biological problems. Several precautions for successful imaging and the preparation of cantilever tips and substrate surfaces will greatly benefit first-time users of HS-AFM. In turn, the instrumentation techniques detailed in Chapter 4 can be skipped, but will be useful for engineers and scientists who want to develop the next generation of high-speed scanning probe microscopes for biology. The book is intended to facilitate the first-time use of this new technique, and to inspire students and researchers to tackle their own specific biological problems by directly observing dynamic events occurring in the nanoscopic world. Microscopy in biology has recently entered a new era with the advent of high-speed atomic force microscopy (HS-AFM). Unlike optical microscopy, electron microscopy, and conventional slow AFM, it allows us to directly observe biological molecules in physiological environments. Molecular “movies” created using HS-AFM can directly reveal how molecules behave and operate, without the need for subsequent complex analyses and roundabout interpretations. It also allows us to directly monitor morphological change in live cells, and dynamic molecular events occurring on the surfaces of living bacteria and intracellular organelles. As HS-AFM instruments were recently commercialized, in the near future HS-AFM is expected to become a common tool in biology, and will enhance and accelerate our understanding of biological phenomena.
Atomic Force Microscopy
Author: Pier Carlo Braga
Publisher: Springer Science & Business Media
ISBN: 1592596479
Category : Science
Languages : en
Pages : 388
Book Description
The natural, biological, medical, and related sciences would not be what they are today without the microscope. After the introduction of the optical microscope, a second breakthrough in morphostructural surface analysis occurred in the 1940s with the development of the scanning electron microscope (SEM), which, instead of light (i. e. , photons) and glass lenses, uses electrons and electromagnetic lenses (magnetic coils). Optical and scanning (or transmission) electron microscopes are called “far-field microscopes” because of the long distance between the sample and the point at which the image is obtained in comparison with the wavelengths of the photons or electrons involved. In this case, the image is a diffraction pattern and its resolution is wavelength limited. In 1986, a completely new type of microscopy was proposed, which, without the use of lenses, photons, or electrons, directly explores the sample surface by means of mechanical scanning, thus opening up unexpected possibilities for the morphostructural and mechanical analysis of biological specimens. These new scanning probe microscopes are based on the concept of near-field microscopy, which overcomes the problem of the limited diffraction-related resolution inherent in conventional microscopes. Located in the immediate vicinity of the sample itself (usually within a few nanometers), the probe records the intensity, rather than the interference signal, thus significantly improving resolution. Since the most we- known microscopes of this type operate using atomic forces, they are frequently referred to as atomic force microscopes (AFMs).
Publisher: Springer Science & Business Media
ISBN: 1592596479
Category : Science
Languages : en
Pages : 388
Book Description
The natural, biological, medical, and related sciences would not be what they are today without the microscope. After the introduction of the optical microscope, a second breakthrough in morphostructural surface analysis occurred in the 1940s with the development of the scanning electron microscope (SEM), which, instead of light (i. e. , photons) and glass lenses, uses electrons and electromagnetic lenses (magnetic coils). Optical and scanning (or transmission) electron microscopes are called “far-field microscopes” because of the long distance between the sample and the point at which the image is obtained in comparison with the wavelengths of the photons or electrons involved. In this case, the image is a diffraction pattern and its resolution is wavelength limited. In 1986, a completely new type of microscopy was proposed, which, without the use of lenses, photons, or electrons, directly explores the sample surface by means of mechanical scanning, thus opening up unexpected possibilities for the morphostructural and mechanical analysis of biological specimens. These new scanning probe microscopes are based on the concept of near-field microscopy, which overcomes the problem of the limited diffraction-related resolution inherent in conventional microscopes. Located in the immediate vicinity of the sample itself (usually within a few nanometers), the probe records the intensity, rather than the interference signal, thus significantly improving resolution. Since the most we- known microscopes of this type operate using atomic forces, they are frequently referred to as atomic force microscopes (AFMs).
Atomic Force Microscopy
Author: Nuno C. Santos
Publisher: Humana Press
ISBN: 9781493988938
Category : Science
Languages : en
Pages : 372
Book Description
This book aims to provide examples of applications of atomic force microscopy (AFM) using biological samples, showing different methods for AFM sample preparation, data acquisition and processing, and avoiding technical problems. Divided into two sections, chapters guide readers through image artifacts, process and quantitatively analyze AFM images, lipid bilayers, image DNA-protein complexes, AFM cell topography, single-molecule force spectroscopy, single-molecule dynamic force spectroscopy, fluorescence methodologies, molecular recognition force spectroscopy, biomechanical characterization, AFM-based biosensor setup, and detail how to implement such an in vitro system, which can monitor cardiac electrophysiology, intracellular calcium dynamics, and single cell mechanics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Atomic Force Microscopy: Methods and Protocols is useful for researchers at different stages, from newcomers to experienced users, interested in new AFM applications.
Publisher: Humana Press
ISBN: 9781493988938
Category : Science
Languages : en
Pages : 372
Book Description
This book aims to provide examples of applications of atomic force microscopy (AFM) using biological samples, showing different methods for AFM sample preparation, data acquisition and processing, and avoiding technical problems. Divided into two sections, chapters guide readers through image artifacts, process and quantitatively analyze AFM images, lipid bilayers, image DNA-protein complexes, AFM cell topography, single-molecule force spectroscopy, single-molecule dynamic force spectroscopy, fluorescence methodologies, molecular recognition force spectroscopy, biomechanical characterization, AFM-based biosensor setup, and detail how to implement such an in vitro system, which can monitor cardiac electrophysiology, intracellular calcium dynamics, and single cell mechanics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Atomic Force Microscopy: Methods and Protocols is useful for researchers at different stages, from newcomers to experienced users, interested in new AFM applications.
Atomic Force Microscopy
Author: Peter Eaton
Publisher: Oxford University Press
ISBN: 0199570450
Category : Science
Languages : en
Pages : 257
Book Description
Atomic force microscopes are very important tools for the advancement of science and technology. This book provides an introduction to the microscopes so that scientists and engineers can learn both how to use them, and what they can do.
Publisher: Oxford University Press
ISBN: 0199570450
Category : Science
Languages : en
Pages : 257
Book Description
Atomic force microscopes are very important tools for the advancement of science and technology. This book provides an introduction to the microscopes so that scientists and engineers can learn both how to use them, and what they can do.
Atomic Force Microscopy in Liquid
Author: Arturo M. Baró
Publisher: John Wiley & Sons
ISBN: 3527327584
Category : Science
Languages : en
Pages : 385
Book Description
About 40 % of current atomic force microscopy (AFM) research is performed in liquids, making liquid-based AFM a rapidly growing and important tool for the study of biological materials. This book focuses on the underlying principles and experimental aspects of AFM under liquid, with an easy-to-follow organization intended for new AFM scientists. The book also serves as an up-to-date review of new AFM techniques developed especially for biological samples. Aimed at physicists, materials scientists, biologists, analytical chemists, and medicinal chemists. An ideal reference book for libraries. From the contents: Part I: General Atomic Force Microscopy * AFM: Basic Concepts * Carbon Nanotube Tips in Atomic Force Microscopy with * Applications to Imaging in Liquid * Force Spectroscopy * Atomic Force Microscopy in Liquid * Fundamentals of AFM Cantilever Dynamics in Liquid * Environments * Single-Molecule Force Spectroscopy * High-Speed AFM for Observing Dynamic Processes in Liquid * Integration of AFM with Optical Microscopy Techniques Part II: Biological Applications * DNA and Protein-DNA Complexes * Single-Molecule Force Microscopy of Cellular Sensors * AFM-Based Single-Cell Force Spectroscopy * Nano-Surgical Manipulation of Living Cells with the AFM
Publisher: John Wiley & Sons
ISBN: 3527327584
Category : Science
Languages : en
Pages : 385
Book Description
About 40 % of current atomic force microscopy (AFM) research is performed in liquids, making liquid-based AFM a rapidly growing and important tool for the study of biological materials. This book focuses on the underlying principles and experimental aspects of AFM under liquid, with an easy-to-follow organization intended for new AFM scientists. The book also serves as an up-to-date review of new AFM techniques developed especially for biological samples. Aimed at physicists, materials scientists, biologists, analytical chemists, and medicinal chemists. An ideal reference book for libraries. From the contents: Part I: General Atomic Force Microscopy * AFM: Basic Concepts * Carbon Nanotube Tips in Atomic Force Microscopy with * Applications to Imaging in Liquid * Force Spectroscopy * Atomic Force Microscopy in Liquid * Fundamentals of AFM Cantilever Dynamics in Liquid * Environments * Single-Molecule Force Spectroscopy * High-Speed AFM for Observing Dynamic Processes in Liquid * Integration of AFM with Optical Microscopy Techniques Part II: Biological Applications * DNA and Protein-DNA Complexes * Single-Molecule Force Microscopy of Cellular Sensors * AFM-Based Single-Cell Force Spectroscopy * Nano-Surgical Manipulation of Living Cells with the AFM
Atomic Force Microscopy in Molecular and Cell Biology
Author: Jiye Cai
Publisher: Springer
ISBN: 9811315108
Category : Science
Languages : en
Pages : 244
Book Description
The book addresses new achievements in AFM instruments – e.g. higher speed and higher resolution – and how AFM is being combined with other new methods like NSOM, STED, STORM, PALM, and Raman. This book explores the latest advances in atomic force microscopy and related techniques in molecular and cell biology. Atomic force microscopy (AFM) can be used to detect the superstructures of the cell membrane, cell morphology, cell skeletons and their mechanical properties. Opening up new fields of in-situ dynamic study for living cells, enzymatic reactions, fibril growth and biomedical research, these combined techniques will yield valuable new insights into molecule and cell biology. This book offers a valuable resource for students and researchers in the fields of biochemistry, cell research and chemistry etc.
Publisher: Springer
ISBN: 9811315108
Category : Science
Languages : en
Pages : 244
Book Description
The book addresses new achievements in AFM instruments – e.g. higher speed and higher resolution – and how AFM is being combined with other new methods like NSOM, STED, STORM, PALM, and Raman. This book explores the latest advances in atomic force microscopy and related techniques in molecular and cell biology. Atomic force microscopy (AFM) can be used to detect the superstructures of the cell membrane, cell morphology, cell skeletons and their mechanical properties. Opening up new fields of in-situ dynamic study for living cells, enzymatic reactions, fibril growth and biomedical research, these combined techniques will yield valuable new insights into molecule and cell biology. This book offers a valuable resource for students and researchers in the fields of biochemistry, cell research and chemistry etc.
Nanoscience And Technology: A Collection Of Reviews From Nature Journals
Author: Peter Rodgers
Publisher: World Scientific
ISBN: 9814466867
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
This book contains 35 review articles on nanoscience and nanotechnology that were first published in Nature Nanotechnology, Nature Materials and a number of other Nature journals. The articles are all written by leading authorities in their field and cover a wide range of areas in nanoscience and technology, from basic research (such as single-molecule devices and new materials) through to applications (in, for example, nanomedicine and data storage).
Publisher: World Scientific
ISBN: 9814466867
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
This book contains 35 review articles on nanoscience and nanotechnology that were first published in Nature Nanotechnology, Nature Materials and a number of other Nature journals. The articles are all written by leading authorities in their field and cover a wide range of areas in nanoscience and technology, from basic research (such as single-molecule devices and new materials) through to applications (in, for example, nanomedicine and data storage).
Single Molecule Dynamics in Life Science
Author: Toshio Yanagida
Publisher: John Wiley & Sons
ISBN: 3527312889
Category : Science
Languages : en
Pages : 347
Book Description
In this first comprehensive resource to cover the application of single molecule techniques to biological measurements, the pioneers in the field show how to both set up and interpret a single molecule experiment. Following an introduction to single molecule measurements and enzymology, the expert authors consider molecular motors and mechanical properties before moving on to the applications themselves. Detailed discussions of studies on protein enzymes, ribozymes and nucleic acids are also included.
Publisher: John Wiley & Sons
ISBN: 3527312889
Category : Science
Languages : en
Pages : 347
Book Description
In this first comprehensive resource to cover the application of single molecule techniques to biological measurements, the pioneers in the field show how to both set up and interpret a single molecule experiment. Following an introduction to single molecule measurements and enzymology, the expert authors consider molecular motors and mechanical properties before moving on to the applications themselves. Detailed discussions of studies on protein enzymes, ribozymes and nucleic acids are also included.
Nanoscale Imaging
Author: Yuri L. Lyubchenko
Publisher: Humana Press
ISBN: 9781493985906
Category : Medical
Languages : en
Pages : 600
Book Description
This volume presents readers with the latest techniques to study nanoimaging and nanoprobing in application to a broad range of biological systems. The chapters in this book are divided into five parts, and cover topics such as imaging and probing of biomacromolecules including high-speed imaging and probing with AFM; probing chromatin structure with magnetic tweezers; and fluorescence correlation spectroscopy on genomic DNA in living cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and through, Nanoscale Imaging: Methods and Protocols is a valuable resource for anyone interested in learning more about this developing and expanding field.
Publisher: Humana Press
ISBN: 9781493985906
Category : Medical
Languages : en
Pages : 600
Book Description
This volume presents readers with the latest techniques to study nanoimaging and nanoprobing in application to a broad range of biological systems. The chapters in this book are divided into five parts, and cover topics such as imaging and probing of biomacromolecules including high-speed imaging and probing with AFM; probing chromatin structure with magnetic tweezers; and fluorescence correlation spectroscopy on genomic DNA in living cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and through, Nanoscale Imaging: Methods and Protocols is a valuable resource for anyone interested in learning more about this developing and expanding field.
Atomic Force Microscopy
Author: Bert Voigtländer
Publisher: Springer
ISBN: 303013654X
Category : Science
Languages : en
Pages : 329
Book Description
This book explains the operating principles of atomic force microscopy with the aim of enabling the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. This enhanced second edition to "Scanning Probe Microscopy" (Springer, 2015) represents a substantial extension and revision to the part on atomic force microscopy of the previous book. Covering both fundamental and important technical aspects of atomic force microscopy, this book concentrates on the principles the methods using a didactic approach in an easily digestible manner. While primarily aimed at graduate students in physics, materials science, chemistry, nanoscience and engineering, this book is also useful for professionals and newcomers in the field, and is an ideal reference book in any atomic force microscopy lab.
Publisher: Springer
ISBN: 303013654X
Category : Science
Languages : en
Pages : 329
Book Description
This book explains the operating principles of atomic force microscopy with the aim of enabling the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. This enhanced second edition to "Scanning Probe Microscopy" (Springer, 2015) represents a substantial extension and revision to the part on atomic force microscopy of the previous book. Covering both fundamental and important technical aspects of atomic force microscopy, this book concentrates on the principles the methods using a didactic approach in an easily digestible manner. While primarily aimed at graduate students in physics, materials science, chemistry, nanoscience and engineering, this book is also useful for professionals and newcomers in the field, and is an ideal reference book in any atomic force microscopy lab.