Author: Werner Schreyer
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 560
Book Description
High-pressure Researches in Geoscience
Author: Werner Schreyer
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 560
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 560
Book Description
High-pressure Research
Author: Yasuhiko Syono
Publisher: American Geophysical Union
ISBN: 0875900348
Category : Earth (Planet)
Languages : en
Pages : 501
Book Description
Publisher: American Geophysical Union
ISBN: 0875900348
Category : Earth (Planet)
Languages : en
Pages : 501
Book Description
High Pressure Research in Mineral Physics
Author: Murli H. Manghnani
Publisher: American Geophysical Union
ISBN: 0875900666
Category : Mineralogical chemistry
Languages : en
Pages : 457
Book Description
Publisher: American Geophysical Union
ISBN: 0875900666
Category : Mineralogical chemistry
Languages : en
Pages : 457
Book Description
Earth Deep Interior: High-pressure Experiments and Theoretical Calculations From the Atomic to the Global Scale
Author: Lidong Dai
Publisher: Frontiers Media SA
ISBN: 2889765431
Category : Science
Languages : en
Pages : 123
Book Description
Publisher: Frontiers Media SA
ISBN: 2889765431
Category : Science
Languages : en
Pages : 123
Book Description
Microscopic Properties and Processes in Minerals
Author: Kate Wright
Publisher: Springer Science & Business Media
ISBN: 9780792359814
Category : Science
Languages : en
Pages : 670
Book Description
One of the major developments in Earth Sciences in general, and mineralogy in particular, has been the growth of our understanding of the microscopic behaviour of the complex materials that make up the Earth. This has been made possible by advances in our ability to probe minerals at the atomic level, over a large range of pressure and temperature conditions. New experimental techniques include the use of scanning probe microscopies to investigate mineral surfaces, as well as the use of neutron scattering, nuclear spectroscopies and synchrotron radiation to investigate the bonding and structure of minerals. In addition, there have been major developments in computational methods so that it is now possible to calculate the electronic structure of many rock forming materials. The aim of this volume is to give a coherent survey of the latest developments in experimental and theoretical approaches to the study of microscopic propertie~ and processes in minerals. Chapters in the book cover a number of key themes in the mineral sciences such as the behaviour of minerals at extremes of pressure and temperature, ordering in complex silicates, mechanisms of water incorporation in mantle phases, the importance of reactions occurring at the mineral surface, and the ability of computational methods to provide useful, qualitative information on the bulk and surface properties of minerals. The background to several experimental techniques is covered in some detail with examples of relevance to the issues cited above.
Publisher: Springer Science & Business Media
ISBN: 9780792359814
Category : Science
Languages : en
Pages : 670
Book Description
One of the major developments in Earth Sciences in general, and mineralogy in particular, has been the growth of our understanding of the microscopic behaviour of the complex materials that make up the Earth. This has been made possible by advances in our ability to probe minerals at the atomic level, over a large range of pressure and temperature conditions. New experimental techniques include the use of scanning probe microscopies to investigate mineral surfaces, as well as the use of neutron scattering, nuclear spectroscopies and synchrotron radiation to investigate the bonding and structure of minerals. In addition, there have been major developments in computational methods so that it is now possible to calculate the electronic structure of many rock forming materials. The aim of this volume is to give a coherent survey of the latest developments in experimental and theoretical approaches to the study of microscopic propertie~ and processes in minerals. Chapters in the book cover a number of key themes in the mineral sciences such as the behaviour of minerals at extremes of pressure and temperature, ordering in complex silicates, mechanisms of water incorporation in mantle phases, the importance of reactions occurring at the mineral surface, and the ability of computational methods to provide useful, qualitative information on the bulk and surface properties of minerals. The background to several experimental techniques is covered in some detail with examples of relevance to the issues cited above.
Advances in High-Pressure Techniques for Geophysical Applications
Author: J. Chen
Publisher: Elsevier
ISBN: 0080457665
Category : Science
Languages : en
Pages : 532
Book Description
High-pressure mineral physics is a field that is strongly driven by the development of new technology. Fifty years ago, when experimentally achievable pressures were limited to just 25 GPa, little was know about the mineralogy of the Earth's lower mantle. Silicate perovskite, the likely dominant mineral of the deep Earth, was identified only when the high-pressure techniques broke the pressure barrier of 25 GPa in 1970s. However, as the maximum achievable pressure reached beyond one Megabar (100 GPa) and even to the pressure of Earth's core on minute samples, new discoveries increasingly were fostered by the development of new analytical techniques and improvements in sensitivity and precision of existing techniques. The book consists of six sections which group the papers according to their main topics: a) Elastic and Anelastic Properties; b) Rheology; c) Melt and Glass Properties; d) Structural and Magnetic Properties; e) Diffraction and Spectroscopy; f) Pressure Calibration and Generation. As many papers cover multiple topics, readers may find papers of interest in different sections. All papers are prepared with emphasis on technical details suitable for a technical reference. Many on-line software resources are also listed in as detailed a manner as possible. However, the URL of the software sites may be subject to change without notice.* State of the art in a very important branch of geophysics, namely the experimental determination of material behavior at the extreme conditions of planetary interiors* Emphasis on technical details suitable for a technical reference* Includes many on-line software resources
Publisher: Elsevier
ISBN: 0080457665
Category : Science
Languages : en
Pages : 532
Book Description
High-pressure mineral physics is a field that is strongly driven by the development of new technology. Fifty years ago, when experimentally achievable pressures were limited to just 25 GPa, little was know about the mineralogy of the Earth's lower mantle. Silicate perovskite, the likely dominant mineral of the deep Earth, was identified only when the high-pressure techniques broke the pressure barrier of 25 GPa in 1970s. However, as the maximum achievable pressure reached beyond one Megabar (100 GPa) and even to the pressure of Earth's core on minute samples, new discoveries increasingly were fostered by the development of new analytical techniques and improvements in sensitivity and precision of existing techniques. The book consists of six sections which group the papers according to their main topics: a) Elastic and Anelastic Properties; b) Rheology; c) Melt and Glass Properties; d) Structural and Magnetic Properties; e) Diffraction and Spectroscopy; f) Pressure Calibration and Generation. As many papers cover multiple topics, readers may find papers of interest in different sections. All papers are prepared with emphasis on technical details suitable for a technical reference. Many on-line software resources are also listed in as detailed a manner as possible. However, the URL of the software sites may be subject to change without notice.* State of the art in a very important branch of geophysics, namely the experimental determination of material behavior at the extreme conditions of planetary interiors* Emphasis on technical details suitable for a technical reference* Includes many on-line software resources
Ultrahigh-pressure Mineralogy
Author: Russell Julian Hemley
Publisher: de Gruyter
ISBN:
Category : Science
Languages : en
Pages : 700
Book Description
Volume 37 of Reviews in Mineralogy moves from the complexity of rocks to their mineral components and finally to fundamental properties arising directly from the play of electrons and nuclei. This volume was prepared for a short course by the same t
Publisher: de Gruyter
ISBN:
Category : Science
Languages : en
Pages : 700
Book Description
Volume 37 of Reviews in Mineralogy moves from the complexity of rocks to their mineral components and finally to fundamental properties arising directly from the play of electrons and nuclei. This volume was prepared for a short course by the same t
Summaries of physical research in geosciences
Author: United States. Energy Research and Development Administration. Division of Basic Energy Sciences
Publisher:
ISBN:
Category :
Languages : en
Pages : 60
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 60
Book Description
Google Earth and Virtual Visualizations in Geoscience Education and Research
Author: Steven J. Whitmeyer
Publisher: Geological Society of America
ISBN: 0813724929
Category : Science
Languages : en
Pages : 492
Book Description
GSA Special Paper 492 consists of 35 papers that collectively synthesize the development and current uses of Google Earth and associated visualization media in geoscience education and research. Chapters focus on Google Earth and related tools, such as SketchUp, Google Fusion Tables, GigaPan, and LiDAR. Many of these papers include digital media that illustrate and highlight important themes of the texts. This volume is intended to document the state of the art for geoscience applications of geobrowsers, such as Google Earth, along with providing provocative examples of where this technology is headed in the future.
Publisher: Geological Society of America
ISBN: 0813724929
Category : Science
Languages : en
Pages : 492
Book Description
GSA Special Paper 492 consists of 35 papers that collectively synthesize the development and current uses of Google Earth and associated visualization media in geoscience education and research. Chapters focus on Google Earth and related tools, such as SketchUp, Google Fusion Tables, GigaPan, and LiDAR. Many of these papers include digital media that illustrate and highlight important themes of the texts. This volume is intended to document the state of the art for geoscience applications of geobrowsers, such as Google Earth, along with providing provocative examples of where this technology is headed in the future.
New Developments in High-Pressure Mineral Physics and Applications to the Earth's Interior
Author: D.C. Rubie
Publisher: Gulf Professional Publishing
ISBN: 9780444516923
Category : Science
Languages : en
Pages : 662
Book Description
Geophysical measurements, such as the lateral variations in seismic wave velocities that are imaged by seismic tomography, provide the strongest constraints on the structure of the Earth's deep interior. In order to interpret such measurements in terms of mineralogical/compositional models of the Earth's interior, data on the physical and chemical properties of minerals at high pressures and temperatures are essential. Knowledge of thermodynamics, phase equilibria, crystal chemistry, crystallography, rheology, diffusion and heat transport are required to characterize the structure and dynamics of the Earth's deep interior as well as the processes by which the Earth originally differentiated. Many experimental studies have been made possible only by a range of technical developments in the quest to achieve high pressures and temperatures in the laboratory. At the same time, analytical methods, including X-ray diffraction, a variety of spectroscopic techniques, electron microscopy, ultrasonic interferometry, and methods for rheological investigations have been developed and greatly improved. In recent years, major progress has been made also in the field of computational mineralogy whereby ab initio simulations are used to investigate the structural and dynamical properties of condensed matter at an atomistic level. This volume contains a broad range of contributions that typify and summarize recent progress in the areas of high-pressure mineral physics as well as associated technical developments.
Publisher: Gulf Professional Publishing
ISBN: 9780444516923
Category : Science
Languages : en
Pages : 662
Book Description
Geophysical measurements, such as the lateral variations in seismic wave velocities that are imaged by seismic tomography, provide the strongest constraints on the structure of the Earth's deep interior. In order to interpret such measurements in terms of mineralogical/compositional models of the Earth's interior, data on the physical and chemical properties of minerals at high pressures and temperatures are essential. Knowledge of thermodynamics, phase equilibria, crystal chemistry, crystallography, rheology, diffusion and heat transport are required to characterize the structure and dynamics of the Earth's deep interior as well as the processes by which the Earth originally differentiated. Many experimental studies have been made possible only by a range of technical developments in the quest to achieve high pressures and temperatures in the laboratory. At the same time, analytical methods, including X-ray diffraction, a variety of spectroscopic techniques, electron microscopy, ultrasonic interferometry, and methods for rheological investigations have been developed and greatly improved. In recent years, major progress has been made also in the field of computational mineralogy whereby ab initio simulations are used to investigate the structural and dynamical properties of condensed matter at an atomistic level. This volume contains a broad range of contributions that typify and summarize recent progress in the areas of high-pressure mineral physics as well as associated technical developments.