High Power Diamond Schottky Diode

High Power Diamond Schottky Diode PDF Author: Aboulaye Traoré
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis was focused on high power diamond Schottky diodes fabrication. Diamond growth and its doping are today well mastered. The advent of vertical architectures (diode active layer grown on heavily doped diamond substrate) and pseudo-vertical (stack of diode active layer and heavily doped layer grown on insulating substrate) allowed minimizing the high serial resistance, which was induced by the high ionization energy of acceptor-type dopants (boron doped diamond) preferably used in rectifiers fabrications.Besides these geometrical configurations favoring high forward currents, diamond Schottky diodes (pseudo vertical or vertical structures) were limited by: I) the quality of diode active layer altered by defects propagation from heavily doped layer thus leading to lower blocking voltage (maximum critical field of 3 MV/cm reported) than the theoretical values (theoretical values of critical field of 10 MV/cm), II) Schottky electrodes selected and the thermal and chemical stability of interfaces formed with oxygen-terminated diamond surface (required getting a Schottky contact and reducing as much as possible the interface states). Schottky metal selection and diamond surface pretreatment are crucial to get low barrier heights (low forward voltage drop and so low losses), low defects density at interfaces (low leakage current), and a thermally stable interface (high operating temperature). In this thesis, we demonstrated that a pseudo vertical diamond Schottky diode based on an oxygen-terminated surface covered by an easily oxidizable metal like zirconium (Zr) combined with an optimal heavily doped layer, allows overcoming these limitations. We first found a trade-off between the thickness of heavily doped layer and its doping level in order to minimize defects generations and thus improve the quality of diode active layer grown on the heavily doped layer (Less defects propagations). On a second hand, the Zr metallic electrodes selected gave rise to a thin zirconia interface layer which was thermally stable thus preventing the oxygen layer desorption. Zr/oxidized diamond rectifiers exhibited better features than the current state of art: a high forward current density (1000 A/cm2 at 6 V), a high critical field above 7 MV/cm (1000 V blocking voltage with a leakage current less than 1 pA), a Baliga's power figure of merit above 244 MW/cm2 (the highest value reported), a good reproducibility regardless of diodes and samples, the possibility to get a barrier heights below 1 eV by annealing, and a thermal stability higher than 500°C.

High Power Diamond Schottky Diode

High Power Diamond Schottky Diode PDF Author: Aboulaye Traoré
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis was focused on high power diamond Schottky diodes fabrication. Diamond growth and its doping are today well mastered. The advent of vertical architectures (diode active layer grown on heavily doped diamond substrate) and pseudo-vertical (stack of diode active layer and heavily doped layer grown on insulating substrate) allowed minimizing the high serial resistance, which was induced by the high ionization energy of acceptor-type dopants (boron doped diamond) preferably used in rectifiers fabrications.Besides these geometrical configurations favoring high forward currents, diamond Schottky diodes (pseudo vertical or vertical structures) were limited by: I) the quality of diode active layer altered by defects propagation from heavily doped layer thus leading to lower blocking voltage (maximum critical field of 3 MV/cm reported) than the theoretical values (theoretical values of critical field of 10 MV/cm), II) Schottky electrodes selected and the thermal and chemical stability of interfaces formed with oxygen-terminated diamond surface (required getting a Schottky contact and reducing as much as possible the interface states). Schottky metal selection and diamond surface pretreatment are crucial to get low barrier heights (low forward voltage drop and so low losses), low defects density at interfaces (low leakage current), and a thermally stable interface (high operating temperature). In this thesis, we demonstrated that a pseudo vertical diamond Schottky diode based on an oxygen-terminated surface covered by an easily oxidizable metal like zirconium (Zr) combined with an optimal heavily doped layer, allows overcoming these limitations. We first found a trade-off between the thickness of heavily doped layer and its doping level in order to minimize defects generations and thus improve the quality of diode active layer grown on the heavily doped layer (Less defects propagations). On a second hand, the Zr metallic electrodes selected gave rise to a thin zirconia interface layer which was thermally stable thus preventing the oxygen layer desorption. Zr/oxidized diamond rectifiers exhibited better features than the current state of art: a high forward current density (1000 A/cm2 at 6 V), a high critical field above 7 MV/cm (1000 V blocking voltage with a leakage current less than 1 pA), a Baliga's power figure of merit above 244 MW/cm2 (the highest value reported), a good reproducibility regardless of diodes and samples, the possibility to get a barrier heights below 1 eV by annealing, and a thermal stability higher than 500°C.

Power Electronics Device Applications of Diamond Semiconductors

Power Electronics Device Applications of Diamond Semiconductors PDF Author: Satoshi Koizumi
Publisher: Woodhead Publishing
ISBN: 0081021844
Category : Technology & Engineering
Languages : en
Pages : 468

Get Book Here

Book Description
Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices. - Includes contributions from today's most respected researchers who present the latest results for diamond growth, doping, device fabrication, theoretical modeling and device performance - Examines why diamond semiconductors could lead to superior power electronics - Discusses the main challenges to device realization and the best opportunities for the next generation of power electronics

Diamond Schottky Barrier Diodes

Diamond Schottky Barrier Diodes PDF Author: Mihai Brezeanu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Research on wide band gap semiconductors suitable for power electronicdevices has spread rapidly in the last decade. The remarkable results exhibited bysilicon carbide (SiC) Schottky batTier diodes (SBDs), commercially available since2001, showed the potential of wide band gap semiconductors for replacing silicon (Si)in the range of medium to high voltage applications, where high frequency operationis required. With superior physical and electrical properties, diamond became apotential competitor to SiC soon after Element Six reported in 2002 the successfulsynthesis of single crystal plasma deposited diamond with high catTier mobility. This thesis discusses the remarkable properties of diamond and introducesseveral device structures suitable for power electronics. The calculation of severalfigures of merit emphasize the advantages of diamond with respect to silicon andother wide band gap semiconductors and clearly identifies the areas where its impactwould be most significant. Information regarding the first synthesis of diamond, which took place back in 1954, together with data regarding the modern technologicalprocess which leads nowadays to high-quality diamond crystals suitable for electronicdevices, are reviewed. Models regarding the incomplete ionization of atomic dopantsand the variation of catTier mobility with doping level and temperature have beenelaborated and included in numerical simulators. The study introduces the novel diamond M-i-P Schottky diode, a version ofpower Schottky diode which takes advantage of the extremely high intrinsic holemobility. The structure overcomes the drawback induced by the high activationenergies of acceptor dopants in diamond which yield poor hole concentration at roomtemperature. The complex shape of the on-state characteristic exhibited by diamondM-i-P Schottky structures is thoroughly investigated by means of experimentalresults, numerical simulations and theoretical considerations. The fabrication of a ramp oxide termination on a diamond device is for thefirst time reported in this thesis. Both experimental and simulated results show thepotential of this termination structure, previously built on Si and SiC power devices. A comprehensive comparison between the ramp oxide and two other versions of thefield plate termination concept, the single step and the three-step structures, has beenperformed, considering aspects such as electrical performance, occupied area, complexity of technological process and cost. Based on experimental results presented in this study, together withpredictions made via simulations and theoretical models, it is concluded that diamondM-i-P Schottky diodes have the ability to deliver significantly higher performancecompared to that of SiC SBDs if issues such as material defects, Schottky contactformation and measurement of reliable ionization coefficients are carefully addressedin the near future.

Frequency Dependent Response of Diamond Schottky Barrier Diode to Large and Small Electrical Signals

Frequency Dependent Response of Diamond Schottky Barrier Diode to Large and Small Electrical Signals PDF Author: Boonchoat Paosawatyanyong
Publisher:
ISBN:
Category : Diamond thin films
Languages : en
Pages : 406

Get Book Here

Book Description


Ultra-wide Bandgap Semiconductor Materials

Ultra-wide Bandgap Semiconductor Materials PDF Author: Meiyong Liao
Publisher: Elsevier
ISBN: 0128172568
Category : Technology & Engineering
Languages : en
Pages : 506

Get Book Here

Book Description
Ultra-wide Bandgap Semiconductors (UWBG) covers the most recent progress in UWBG materials, including sections on high-Al-content AlGaN, diamond, B-Ga2O3, and boron nitrides. The coverage of these materials is comprehensive, addressing materials growth, physics properties, doping, device design, fabrication and performance. The most relevant and important applications are covered, including power electronics, RF electronics and DUV optoelectronics. There is also a chapter on novel structures based on UWBG, such as the heterojunctions, the low-dimensional structures, and their devices. This book is ideal for materials scientists and engineers in academia and R&D searching for materials superior to silicon carbide and gallium nitride. - Provides a one-stop resource on the most promising ultra-wide bandgap semiconducting materials, including high-Al-content AlGaN, diamond, ß-Ga2O3, boron nitrides, and low-dimensional materials - Presents comprehensive coverage, from materials growth and properties, to device design, fabrication and performance - Features the most relevant applications, including power electronics, RF electronics and DUV optoelectronics

CVD Diamond for Electronic Devices and Sensors

CVD Diamond for Electronic Devices and Sensors PDF Author: Ricardo S. Sussmann
Publisher: John Wiley & Sons
ISBN: 9780470740361
Category : Technology & Engineering
Languages : en
Pages : 596

Get Book Here

Book Description
Synthetic diamond is diamond produced by using chemical or physical processes. Like naturally occurring diamond it is composed of a three-dimensional carbon crystal. Due to its extreme physical properties, synthetic diamond is used in many industrial applications, such as drill bits and scratch-proof coatings, and has the potential to be used in many new application areas A brand new title from the respected Wiley Materials for Electronic and Optoelectronic Applications series, this title is the most up-to-date resource for diamond specialists. Beginning with an introduction to the properties of diamond, defects, impurities and the growth of CVD diamond with its imminent commercial impact, the remainder of the book comprises six sections: introduction, radiation sensors, active electronic devices, biosensors, MEMs and electrochemistry. Subsequent chapters cover the diverse areas in which diamond applications are having an impact including electronics, sensors and actuators and medicine.

Low-Pressure Synthetic Diamond

Low-Pressure Synthetic Diamond PDF Author: Bernhard Dischler
Publisher: Springer Science & Business Media
ISBN: 3642719929
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
A comprehensive presentation of the complete spectrum of methods for CVD-diamond deposition and an overview of the most important applications.

State-of-the-Art Program on Compound Semiconductors XXXIX and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV

State-of-the-Art Program on Compound Semiconductors XXXIX and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV PDF Author: R. F. Kopf
Publisher: The Electrochemical Society
ISBN: 9781566773911
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book Here

Book Description


Design and Simulation of Single-crystal Diamond Diodes for High Voltage, High Power and High Temperature Applications

Design and Simulation of Single-crystal Diamond Diodes for High Voltage, High Power and High Temperature Applications PDF Author: Nutthamon Suwanmonkha
Publisher:
ISBN: 9781369019612
Category : Electronic dissertations
Languages : en
Pages : 118

Get Book Here

Book Description


Physics Of High Power Laser Matter Interactions - Proceedings Of The Japan-us Seminar

Physics Of High Power Laser Matter Interactions - Proceedings Of The Japan-us Seminar PDF Author: H Takabe
Publisher: World Scientific
ISBN: 9814554162
Category :
Languages : en
Pages : 470

Get Book Here

Book Description
The theory of operator algebras is generally considered over the field of complex numbers and in the complex Hilbert spaces. So it is a natural and interesting problem: How is the theory in the field of real numbers? Up to now, the theory of operator algebras over the field of real numbers has seemed not to be introduced systematically and sufficiently.The aim of this book is to set up the fundamentals of real operator algebras and to give a systematic discussion for real operator algebras. Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras, real Banach ∗ algebras, real C∗-algebras and W∗-algebras, etc.), and some basic facts are given, one can get some results on real operator algebras easily.The book is also an introduction to real operator algebras, written in a self-contained manner. The reader needs just a general knowledge of Banach algebras and operator algebras.