Author: Victor Eijkhout
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536
Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
Introduction to High Performance Scientific Computing
Author: Victor Eijkhout
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536
Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536
Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
High Performance Computing and the Art of Parallel Programming
Author: Stan Openshaw
Publisher: Routledge
ISBN: 1134729715
Category : Science
Languages : en
Pages : 260
Book Description
This book provides a non-technical introduction to High Performance Computing applications together with advice about how beginners can start to write parallel programs. The authors show what HPC can offer geographers and social scientists and how it can be used in GIS. They provide examples of where it has already been used and suggestions for other areas of application in geography and the social sciences. Case studies drawn from geography explain the key principles and help to understand the logic and thought processes that lie behind the parallel programming.
Publisher: Routledge
ISBN: 1134729715
Category : Science
Languages : en
Pages : 260
Book Description
This book provides a non-technical introduction to High Performance Computing applications together with advice about how beginners can start to write parallel programs. The authors show what HPC can offer geographers and social scientists and how it can be used in GIS. They provide examples of where it has already been used and suggestions for other areas of application in geography and the social sciences. Case studies drawn from geography explain the key principles and help to understand the logic and thought processes that lie behind the parallel programming.
Parallel Programming for Modern High Performance Computing Systems
Author: Pawel Czarnul
Publisher: CRC Press
ISBN: 1351385801
Category : Business & Economics
Languages : en
Pages : 330
Book Description
In view of the growing presence and popularity of multicore and manycore processors, accelerators, and coprocessors, as well as clusters using such computing devices, the development of efficient parallel applications has become a key challenge to be able to exploit the performance of such systems. This book covers the scope of parallel programming for modern high performance computing systems. It first discusses selected and popular state-of-the-art computing devices and systems available today, These include multicore CPUs, manycore (co)processors, such as Intel Xeon Phi, accelerators, such as GPUs, and clusters, as well as programming models supported on these platforms. It next introduces parallelization through important programming paradigms, such as master-slave, geometric Single Program Multiple Data (SPMD) and divide-and-conquer. The practical and useful elements of the most popular and important APIs for programming parallel HPC systems are discussed, including MPI, OpenMP, Pthreads, CUDA, OpenCL, and OpenACC. It also demonstrates, through selected code listings, how selected APIs can be used to implement important programming paradigms. Furthermore, it shows how the codes can be compiled and executed in a Linux environment. The book also presents hybrid codes that integrate selected APIs for potentially multi-level parallelization and utilization of heterogeneous resources, and it shows how to use modern elements of these APIs. Selected optimization techniques are also included, such as overlapping communication and computations implemented using various APIs. Features: Discusses the popular and currently available computing devices and cluster systems Includes typical paradigms used in parallel programs Explores popular APIs for programming parallel applications Provides code templates that can be used for implementation of paradigms Provides hybrid code examples allowing multi-level parallelization Covers the optimization of parallel programs
Publisher: CRC Press
ISBN: 1351385801
Category : Business & Economics
Languages : en
Pages : 330
Book Description
In view of the growing presence and popularity of multicore and manycore processors, accelerators, and coprocessors, as well as clusters using such computing devices, the development of efficient parallel applications has become a key challenge to be able to exploit the performance of such systems. This book covers the scope of parallel programming for modern high performance computing systems. It first discusses selected and popular state-of-the-art computing devices and systems available today, These include multicore CPUs, manycore (co)processors, such as Intel Xeon Phi, accelerators, such as GPUs, and clusters, as well as programming models supported on these platforms. It next introduces parallelization through important programming paradigms, such as master-slave, geometric Single Program Multiple Data (SPMD) and divide-and-conquer. The practical and useful elements of the most popular and important APIs for programming parallel HPC systems are discussed, including MPI, OpenMP, Pthreads, CUDA, OpenCL, and OpenACC. It also demonstrates, through selected code listings, how selected APIs can be used to implement important programming paradigms. Furthermore, it shows how the codes can be compiled and executed in a Linux environment. The book also presents hybrid codes that integrate selected APIs for potentially multi-level parallelization and utilization of heterogeneous resources, and it shows how to use modern elements of these APIs. Selected optimization techniques are also included, such as overlapping communication and computations implemented using various APIs. Features: Discusses the popular and currently available computing devices and cluster systems Includes typical paradigms used in parallel programs Explores popular APIs for programming parallel applications Provides code templates that can be used for implementation of paradigms Provides hybrid code examples allowing multi-level parallelization Covers the optimization of parallel programs
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
The Art of High Performance Computing for Computational Science
Author: Masaaki Geshi
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Parallel I/O for High Performance Computing
Author: John M. May
Publisher: Morgan Kaufmann
ISBN: 9781558606647
Category : Computers
Languages : en
Pages : 392
Book Description
"I enjoyed reading this book immensely. The author was uncommonly careful in his explanations. I'd recommend this book to anyone writing scientific application codes." -Peter S. Pacheco, University of San Francisco "This text provides a useful overview of an area that is currently not addressed in any book. The presentation of parallel I/O issues across all levels of abstraction is this book's greatest strength." -Alan Sussman, University of Maryland Scientific and technical programmers can no longer afford to treat I/O as an afterthought. The speed, memory size, and disk capacity of parallel computers continue to grow rapidly, but the rate at which disk drives can read and write data is improving far less quickly. As a result, the performance of carefully tuned parallel programs can slow dramatically when they read or write files-and the problem is likely to get far worse. Parallel input and output techniques can help solve this problem by creating multiple data paths between memory and disks. However, simply adding disk drives to an I/O system without considering the overall software design will not significantly improve performance. To reap the full benefits of a parallel I/O system, application programmers must understand how parallel I/O systems work and where the performance pitfalls lie. Parallel I/O for High Performance Computing directly addresses this critical need by examining parallel I/O from the bottom up. This important new book is recommended to anyone writing scientific application codes as the best single source on I/O techniques and to computer scientists as a solid up-to-date introduction to parallel I/O research. Features: An overview of key I/O issues at all levels of abstraction-including hardware, through the OS and file systems, up to very high-level scientific libraries. Describes the important features of MPI-IO, netCDF, and HDF-5 and presents numerous examples illustrating how to use each of these I/O interfaces. Addresses the basic question of how to read and write data efficiently in HPC applications. An explanation of various layers of storage - and techniques for using disks (and sometimes tapes) effectively in HPC applications.
Publisher: Morgan Kaufmann
ISBN: 9781558606647
Category : Computers
Languages : en
Pages : 392
Book Description
"I enjoyed reading this book immensely. The author was uncommonly careful in his explanations. I'd recommend this book to anyone writing scientific application codes." -Peter S. Pacheco, University of San Francisco "This text provides a useful overview of an area that is currently not addressed in any book. The presentation of parallel I/O issues across all levels of abstraction is this book's greatest strength." -Alan Sussman, University of Maryland Scientific and technical programmers can no longer afford to treat I/O as an afterthought. The speed, memory size, and disk capacity of parallel computers continue to grow rapidly, but the rate at which disk drives can read and write data is improving far less quickly. As a result, the performance of carefully tuned parallel programs can slow dramatically when they read or write files-and the problem is likely to get far worse. Parallel input and output techniques can help solve this problem by creating multiple data paths between memory and disks. However, simply adding disk drives to an I/O system without considering the overall software design will not significantly improve performance. To reap the full benefits of a parallel I/O system, application programmers must understand how parallel I/O systems work and where the performance pitfalls lie. Parallel I/O for High Performance Computing directly addresses this critical need by examining parallel I/O from the bottom up. This important new book is recommended to anyone writing scientific application codes as the best single source on I/O techniques and to computer scientists as a solid up-to-date introduction to parallel I/O research. Features: An overview of key I/O issues at all levels of abstraction-including hardware, through the OS and file systems, up to very high-level scientific libraries. Describes the important features of MPI-IO, netCDF, and HDF-5 and presents numerous examples illustrating how to use each of these I/O interfaces. Addresses the basic question of how to read and write data efficiently in HPC applications. An explanation of various layers of storage - and techniques for using disks (and sometimes tapes) effectively in HPC applications.
High Performance Computing: Technology, Methods and Applications
Author: J.J. Dongarra
Publisher: Elsevier
ISBN: 0080553915
Category : Computers
Languages : en
Pages : 437
Book Description
High Performance Computing is an integrated computing environment for solving large-scale computational demanding problems in science, engineering and business. Newly emerging areas of HPC applications include medical sciences, transportation, financial operations and advanced human-computer interface such as virtual reality. High performance computing includes computer hardware, software, algorithms, programming tools and environments, plus visualization. The book addresses several of these key components of high performance technology and contains descriptions of the state-of-the-art computer architectures, programming and software tools and innovative applications of parallel computers. In addition, the book includes papers on heterogeneous network-based computing systems and scalability of parallel systems. The reader will find information and data relative to the two main thrusts of high performance computing: the absolute computational performance and that of providing the most cost effective and affordable computing for science, industry and business. The book is recommended for technical as well as management oriented individuals.
Publisher: Elsevier
ISBN: 0080553915
Category : Computers
Languages : en
Pages : 437
Book Description
High Performance Computing is an integrated computing environment for solving large-scale computational demanding problems in science, engineering and business. Newly emerging areas of HPC applications include medical sciences, transportation, financial operations and advanced human-computer interface such as virtual reality. High performance computing includes computer hardware, software, algorithms, programming tools and environments, plus visualization. The book addresses several of these key components of high performance technology and contains descriptions of the state-of-the-art computer architectures, programming and software tools and innovative applications of parallel computers. In addition, the book includes papers on heterogeneous network-based computing systems and scalability of parallel systems. The reader will find information and data relative to the two main thrusts of high performance computing: the absolute computational performance and that of providing the most cost effective and affordable computing for science, industry and business. The book is recommended for technical as well as management oriented individuals.
High Performance Parallel Computing
Author: Satyadhyan Chickerur
Publisher: BoD – Books on Demand
ISBN: 178985623X
Category : Computers
Languages : en
Pages : 120
Book Description
This edited book aims to present the state of the art in research and development of the convergence of high-performance computing and parallel programming for various engineering and scientific applications. The book has consolidated algorithms, techniques, and methodologies to bridge the gap between the theoretical foundations of academia and implementation for research, which might be used in business and other real-time applications in the future.The book outlines techniques and tools used for emergent areas and domains, which include acceleration of large-scale electronic structure simulations with heterogeneous parallel computing, characterizing power and energy efficiency of a data-centric high-performance computing runtime and applications, security applications of GPUs, parallel implementation of multiprocessors on MPI using FDTD, particle-based fused rendering, design and implementation of particle systems for mesh-free methods with high performance, and evolving topics on heterogeneous computing. In the coming days the need to converge HPC, IoT, cloud-based applications will be felt and this volume tries to bridge that gap.
Publisher: BoD – Books on Demand
ISBN: 178985623X
Category : Computers
Languages : en
Pages : 120
Book Description
This edited book aims to present the state of the art in research and development of the convergence of high-performance computing and parallel programming for various engineering and scientific applications. The book has consolidated algorithms, techniques, and methodologies to bridge the gap between the theoretical foundations of academia and implementation for research, which might be used in business and other real-time applications in the future.The book outlines techniques and tools used for emergent areas and domains, which include acceleration of large-scale electronic structure simulations with heterogeneous parallel computing, characterizing power and energy efficiency of a data-centric high-performance computing runtime and applications, security applications of GPUs, parallel implementation of multiprocessors on MPI using FDTD, particle-based fused rendering, design and implementation of particle systems for mesh-free methods with high performance, and evolving topics on heterogeneous computing. In the coming days the need to converge HPC, IoT, cloud-based applications will be felt and this volume tries to bridge that gap.
Introduction to High Performance Computing for Scientists and Engineers
Author: Georg Hager
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
High-Performance Computing
Author: Laurence T. Yang
Publisher: John Wiley & Sons
ISBN: 0471732702
Category : Computers
Languages : en
Pages : 818
Book Description
The state of the art of high-performance computing Prominent researchers from around the world have gathered to present the state-of-the-art techniques and innovations in high-performance computing (HPC), including: * Programming models for parallel computing: graph-oriented programming (GOP), OpenMP, the stages and transformation (SAT) approach, the bulk-synchronous parallel (BSP) model, Message Passing Interface (MPI), and Cilk * Architectural and system support, featuring the code tiling compiler technique, the MigThread application-level migration and checkpointing package, the new prefetching scheme of atomicity, a new "receiver makes right" data conversion method, and lessons learned from applying reconfigurable computing to HPC * Scheduling and resource management issues with heterogeneous systems, bus saturation effects on SMPs, genetic algorithms for distributed computing, and novel task-scheduling algorithms * Clusters and grid computing: design requirements, grid middleware, distributed virtual machines, data grid services and performance-boosting techniques, security issues, and open issues * Peer-to-peer computing (P2P) including the proposed search mechanism of hybrid periodical flooding (HPF) and routing protocols for improved routing performance * Wireless and mobile computing, featuring discussions of implementing the Gateway Location Register (GLR) concept in 3G cellular networks, maximizing network longevity, and comparisons of QoS-aware scatternet scheduling algorithms * High-performance applications including partitioners, running Bag-of-Tasks applications on grids, using low-cost clusters to meet high-demand applications, and advanced convergent architectures and protocols High-Performance Computing: Paradigm and Infrastructure is an invaluable compendium for engineers, IT professionals, and researchers and students of computer science and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 0471732702
Category : Computers
Languages : en
Pages : 818
Book Description
The state of the art of high-performance computing Prominent researchers from around the world have gathered to present the state-of-the-art techniques and innovations in high-performance computing (HPC), including: * Programming models for parallel computing: graph-oriented programming (GOP), OpenMP, the stages and transformation (SAT) approach, the bulk-synchronous parallel (BSP) model, Message Passing Interface (MPI), and Cilk * Architectural and system support, featuring the code tiling compiler technique, the MigThread application-level migration and checkpointing package, the new prefetching scheme of atomicity, a new "receiver makes right" data conversion method, and lessons learned from applying reconfigurable computing to HPC * Scheduling and resource management issues with heterogeneous systems, bus saturation effects on SMPs, genetic algorithms for distributed computing, and novel task-scheduling algorithms * Clusters and grid computing: design requirements, grid middleware, distributed virtual machines, data grid services and performance-boosting techniques, security issues, and open issues * Peer-to-peer computing (P2P) including the proposed search mechanism of hybrid periodical flooding (HPF) and routing protocols for improved routing performance * Wireless and mobile computing, featuring discussions of implementing the Gateway Location Register (GLR) concept in 3G cellular networks, maximizing network longevity, and comparisons of QoS-aware scatternet scheduling algorithms * High-performance applications including partitioners, running Bag-of-Tasks applications on grids, using low-cost clusters to meet high-demand applications, and advanced convergent architectures and protocols High-Performance Computing: Paradigm and Infrastructure is an invaluable compendium for engineers, IT professionals, and researchers and students of computer science and applied mathematics.