Author: Jan S. Hesthaven
Publisher: SIAM
ISBN: 1611975107
Category : Science
Languages : en
Pages : 571
Book Description
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Numerical Methods for Conservation Laws
Author: Jan S. Hesthaven
Publisher: SIAM
ISBN: 1611975107
Category : Science
Languages : en
Pages : 571
Book Description
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Publisher: SIAM
ISBN: 1611975107
Category : Science
Languages : en
Pages : 571
Book Description
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
Advanced Ocean Modelling
Author: Jochen Kämpf
Publisher: Springer Science & Business Media
ISBN: 3642106102
Category : Science
Languages : en
Pages : 190
Book Description
This book focuses on motions of incompressible ?uids of a freely moving surface being in?uenced by both the Earth’s rotation and density strati?cation. In contrast to traditional textbooks in the ?eld of geophysical ?uid dynamics, such as those by by Cushman-Roisin (1994) and Gill (1982), this book uses the method of proce- oriented hydrodynamic modelling to illustrate a rich variety of ?uid phenomena. To this end, the reader can adopt the model codes, found on the Springer server accompanying this book, to reproduce most graphs of this book and, even better, to create animation movies. The reader can also employ the codes as templates for own independent studies. This can be done by a lay person as a hobby activity, undergraduate or postgraduate students as part of their education, or professional scientists as part of research. Exercises of this book are run with open-source software that can be freely downloaded from the Internet. This includes the FORTRAN 95 compiler “G95” used for execution of model simulations, the data visualisation program “SciLab”, and “ImageMagick” for the creation of graphs and GIF animations, which can be watched with most Internet browsers.
Publisher: Springer Science & Business Media
ISBN: 3642106102
Category : Science
Languages : en
Pages : 190
Book Description
This book focuses on motions of incompressible ?uids of a freely moving surface being in?uenced by both the Earth’s rotation and density strati?cation. In contrast to traditional textbooks in the ?eld of geophysical ?uid dynamics, such as those by by Cushman-Roisin (1994) and Gill (1982), this book uses the method of proce- oriented hydrodynamic modelling to illustrate a rich variety of ?uid phenomena. To this end, the reader can adopt the model codes, found on the Springer server accompanying this book, to reproduce most graphs of this book and, even better, to create animation movies. The reader can also employ the codes as templates for own independent studies. This can be done by a lay person as a hobby activity, undergraduate or postgraduate students as part of their education, or professional scientists as part of research. Exercises of this book are run with open-source software that can be freely downloaded from the Internet. This includes the FORTRAN 95 compiler “G95” used for execution of model simulations, the data visualisation program “SciLab”, and “ImageMagick” for the creation of graphs and GIF animations, which can be watched with most Internet browsers.
Computational Challenges in the Geosciences
Author: Clint Dawson
Publisher: Springer Science & Business Media
ISBN: 1461474345
Category : Mathematics
Languages : en
Pages : 176
Book Description
Computational Challenges in the Geosciences addresses a cross-section of grand challenge problems arising in geoscience applications, including groundwater and petroleum reservoir simulation, hurricane storm surge, oceanography, volcanic eruptions and landslides, and tsunamis. Each of these applications gives rise to complex physical and mathematical models spanning multiple space-time scales, which can only be studied through computer simulation. The data required by the models is often highly uncertain, and the numerical solution of the models requires sophisticated algorithms which are mathematically accurate, computationally efficient and yet must preserve basic physical properties of the models. This volume summarizes current methodologies and future research challenges in this broad and important field.
Publisher: Springer Science & Business Media
ISBN: 1461474345
Category : Mathematics
Languages : en
Pages : 176
Book Description
Computational Challenges in the Geosciences addresses a cross-section of grand challenge problems arising in geoscience applications, including groundwater and petroleum reservoir simulation, hurricane storm surge, oceanography, volcanic eruptions and landslides, and tsunamis. Each of these applications gives rise to complex physical and mathematical models spanning multiple space-time scales, which can only be studied through computer simulation. The data required by the models is often highly uncertain, and the numerical solution of the models requires sophisticated algorithms which are mathematically accurate, computationally efficient and yet must preserve basic physical properties of the models. This volume summarizes current methodologies and future research challenges in this broad and important field.
Next Generation Earth System Prediction
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309388805
Category : Science
Languages : en
Pages : 351
Book Description
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
Publisher: National Academies Press
ISBN: 0309388805
Category : Science
Languages : en
Pages : 351
Book Description
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
Dynamics of the West Antarctic Ice Sheet
Author: C.J. van der Veen
Publisher: Springer Science & Business Media
ISBN: 9400937458
Category : Science
Languages : en
Pages : 376
Book Description
Few scientists doubt the prediction that the antropogenic release of carbon dioxide in the atmosphere will lead to some warming of the earth's climate. So there is good reason to investigate the possible effects of such a warming, in dependence of geographical and social economic setting. Many bodies, governmental or not, have organized meetings and issued reports in which the carbon dioxide problem is defined, reviewed, and possible threats assessed. The rate at which such reports are produced still increases. However, while more and more people are getting involved in the 'carbon dioxide business', the number of investigators working on the basic problems grows, in our view, too slowly. Many fundamental questions are still not answered in a satisfactory way, and the carbon dioxide building rests on a few thin pillars. One such fundamental question concerns the change in sea level associated with a climatic warming of a few degrees. A number of processes can be listed that could all lead to changes of the order of tens of centimeters (e. g. thermal expansion, change in mass balance of glaciers and ice sheets). But the picture of the carbon dioxide problem has frequently be made more dramatic by suggesting that the West Antarctic Ice Sheet is unstable, implying a certain probability of a 5 m higher sea-level stand within a few centuries.
Publisher: Springer Science & Business Media
ISBN: 9400937458
Category : Science
Languages : en
Pages : 376
Book Description
Few scientists doubt the prediction that the antropogenic release of carbon dioxide in the atmosphere will lead to some warming of the earth's climate. So there is good reason to investigate the possible effects of such a warming, in dependence of geographical and social economic setting. Many bodies, governmental or not, have organized meetings and issued reports in which the carbon dioxide problem is defined, reviewed, and possible threats assessed. The rate at which such reports are produced still increases. However, while more and more people are getting involved in the 'carbon dioxide business', the number of investigators working on the basic problems grows, in our view, too slowly. Many fundamental questions are still not answered in a satisfactory way, and the carbon dioxide building rests on a few thin pillars. One such fundamental question concerns the change in sea level associated with a climatic warming of a few degrees. A number of processes can be listed that could all lead to changes of the order of tens of centimeters (e. g. thermal expansion, change in mass balance of glaciers and ice sheets). But the picture of the carbon dioxide problem has frequently be made more dramatic by suggesting that the West Antarctic Ice Sheet is unstable, implying a certain probability of a 5 m higher sea-level stand within a few centuries.
Chebyshev and Fourier Spectral Methods
Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 836
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 836
Book Description
Numerical Techniques for Global Atmospheric Models
Author: Peter H. Lauritzen
Publisher: Springer Science & Business Media
ISBN: 364211640X
Category : Mathematics
Languages : en
Pages : 570
Book Description
This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.
Publisher: Springer Science & Business Media
ISBN: 364211640X
Category : Mathematics
Languages : en
Pages : 570
Book Description
This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.
Nodal Discontinuous Galerkin Methods
Author: Jan S. Hesthaven
Publisher: Springer Science & Business Media
ISBN: 0387720650
Category : Mathematics
Languages : en
Pages : 507
Book Description
This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.
Publisher: Springer Science & Business Media
ISBN: 0387720650
Category : Mathematics
Languages : en
Pages : 507
Book Description
This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.
The Scaled Boundary Finite Element Method
Author: Chongmin Song
Publisher: John Wiley & Sons
ISBN: 1119388457
Category : Science
Languages : en
Pages : 775
Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Publisher: John Wiley & Sons
ISBN: 1119388457
Category : Science
Languages : en
Pages : 775
Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.