High Frequency Transformer Isolated Soft-switched Hybrid Phase Modulated DC-to-DC Converters

High Frequency Transformer Isolated Soft-switched Hybrid Phase Modulated DC-to-DC Converters PDF Author: Sriram Jala
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis deals with hybrid phase modulated converter with inductive output filter as well as capacitive output filter. The operational principles, detailed steady-state analysis for different modes of operation, detailed design procedure with an example. simulation and experimental results are presented for HPMC with inductive output filter. HPMC with inductive output filter has reduced output filter requirements and maintains ZVS for wide line and load variations. This converter suffers from duty cycle loss and output rectifier ringing requiring secondary-side snubbers and higher voltage rated rectifier diodes. To overcome this problem, a hybrid phase modulated DC-DC converter with a capacitive output filter is proposed. Different modes of operation of the proposed converter are identified and a detailed steady-state analysis for these modes of operation is presented. A design example of 200 W, 22 V to 41 V input voltage and 350 V output voltage hybrid phase modulated converter with inductive and capacitive output filter is given to present the design procedure. Simulation and experimental results obtained from the laboratory prototype are provided to verify the performance of the converter. A comparison of performance between the HPMC with inductive and capacitive output filters with standard phase-shifted PWM full bridge converter are also presented.

High Frequency Transformer Isolated Soft-switched Hybrid Phase Modulated DC-to-DC Converters

High Frequency Transformer Isolated Soft-switched Hybrid Phase Modulated DC-to-DC Converters PDF Author: Sriram Jala
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis deals with hybrid phase modulated converter with inductive output filter as well as capacitive output filter. The operational principles, detailed steady-state analysis for different modes of operation, detailed design procedure with an example. simulation and experimental results are presented for HPMC with inductive output filter. HPMC with inductive output filter has reduced output filter requirements and maintains ZVS for wide line and load variations. This converter suffers from duty cycle loss and output rectifier ringing requiring secondary-side snubbers and higher voltage rated rectifier diodes. To overcome this problem, a hybrid phase modulated DC-DC converter with a capacitive output filter is proposed. Different modes of operation of the proposed converter are identified and a detailed steady-state analysis for these modes of operation is presented. A design example of 200 W, 22 V to 41 V input voltage and 350 V output voltage hybrid phase modulated converter with inductive and capacitive output filter is given to present the design procedure. Simulation and experimental results obtained from the laboratory prototype are provided to verify the performance of the converter. A comparison of performance between the HPMC with inductive and capacitive output filters with standard phase-shifted PWM full bridge converter are also presented.

High Frequency Transformer Isolated Soft-switched Hybrid Phase Modulated DC-to-DC Converters

High Frequency Transformer Isolated Soft-switched Hybrid Phase Modulated DC-to-DC Converters PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis deals with hybrid phase modulated converter with inductive output filter as well as capacitive output filter. The operational principles, detailed steady-state analysis for different modes of operation, detailed design procedure with an example. simulation and experimental results are presented for HPMC with inductive output filter. HPMC with inductive output filter has reduced output filter requirements and maintains ZVS for wide line and load variations. This converter suffers from duty cycle loss and output rectifier ringing requiring secondary-side snubbers and higher voltage rated rectifier diodes. To overcome this problem, a hybrid phase modulated DC-DC converter with a capacitive output filter is proposed. Different modes of operation of the proposed converter are identified and a detailed steady-state analysis for these modes of operation is presented. A design example of 200 W, 22 V to 41 V input voltage and 350 V output voltage hybrid phase modulated converter with inductive and capacitive output filter is given to present the design procedure. Simulation and experimental results obtained from the laboratory prototype are provided to verify the performance of the converter. A comparison of performance between the HPMC with inductive and capacitive output filters with standard phase-shifted PWM full bridge converter are also presented.

High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain

High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain PDF Author: Deshang Sha
Publisher: Springer
ISBN: 9789811343735
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Written by experts, this book is based on recent research findings in high-frequency isolated bidirectional DC-DC converters with wide voltage range. It presents advanced power control methods and new isolated bidirectional DC-DC topologies to improve the performance of isolated bidirectional converters. Providing valuable insights, advanced methods and practical design guides on the DC-DC conversion that can be considered in applications such as microgrid, bidirectional EV chargers, and solid state transformers, it is a valuable resource for researchers, scientists, and engineers in the field of isolated bidirectional DC-DC converters.

New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters

New Topologies and Modulation Schemes for Soft-Switching Isolated DC–DC Converters PDF Author: Zhiqiang Guo
Publisher: Springer
ISBN: 9789813299368
Category : Technology & Engineering
Languages : en
Pages : 243

Get Book Here

Book Description
This book presents a series of new topologies and modulation schemes for soft-switching in isolated DC–DC converters. Providing detailed analyses and design procedures for converters used in a broad range of applications, it offers a wealth of engineering insights for researchers and students in the field of power electronics, as well as stimulating new ideas for future research.

Soft Commutation Isolated DC-DC Converters

Soft Commutation Isolated DC-DC Converters PDF Author: Ivo Barbi
Publisher: Springer
ISBN: 3319961780
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book Here

Book Description
This book describes the operation and analysis of soft-commutated isolated DC–DC converters used in the design of high efficiency and high power density equipment. It explains the basic principles behind first- and second-order circuits with power switches to enable readers to understand the importance of these converters in high efficiency and high power density power supply design for residential, commercial, industrial and medical use as well as in aerospace equipment. With each chapter featuring a different power converter topology, the book covers the most important resonant converters, including series resonant converters; resonant LLC converters; soft commutation pulse width modulation converters; zero voltage switching; and zero current switching. Each topic is presented with full analysis, a showcase of the power stages of the converters, exercises and their solutions as well as simulation results, which mainly focus on the commutation analysis and output characteristic. This book is a valuable source of information for professionals working in power electronics, power conversion and design of high efficiency and high power density DC–DC converters and switch mode power supplies. The book also serves as a point of reference for engineers responsible for development projects and equipment in companies and research centers and a text for advanced students.

Three-phase High-frequency Transformer Isolated Soft-switching DC-DC Resonant Converters

Three-phase High-frequency Transformer Isolated Soft-switching DC-DC Resonant Converters PDF Author: Mohamed S. M. Almardy
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
There is an increasing demand for power converters with small size, light weight, high conversion efficiency and higher power density. Also, in many applications, there is a need for dc-to-dc converters to accept dc input voltage and provide regulated and/or isolated dc output voltage at a desired voltage level including telecommunications equipment, process control systems, and in industry applications. This thesis presents the analysis, design, simulation and experimental results of three-phase high-frequency transformer isolated resonant converters. The first converter presented is a three-phase LCC-type dc-dc resonant converter with capacitor output filter including the effect of the magnetizing inductance of the three-phase HF transformer. The equivalent ac load resistance is derived and the converter is analyzed by using approximation analysis approach. Base on this analysis, design curves have been obtained and a design example is given. Intusoft simulation results for the designed converter are given for various input voltage and for different load conditions. The experimental verification of the designed converter performance was established by building a 300 W rated power converter and the experimental results have been given. It is shown that the converter works in zero-voltage switching (ZVS) at various input voltage and different load conditions. A three-phase (LC)(L)-type dc-dc series-resonant converter with capacitive output filter has been proposed. Operation of the converter has been presented using the operating waveforms and equivalent circuit diagrams during different intervals. An approximate analysis approach is used to analyze the converter operation, and design procedure is presented with a design example. Intusoft simulation results for the designed converter are given for input voltage and load variations. Experimental results obtained in a 300 W converter are presented. Major advantages of this converter are the leakage and magnetizing inductances of the high-frequency transformer are used as part of resonant circuit and the output rectifier voltage is clamped to the output voltage. The converter operates in soft-switching for the inverter switches for the wide variations in supply voltage and load and it requires narrow switching frequency variation (compared to LCC-type) to regulate the output voltage. A three-phase high-frequency transformer isolated interleaved (LC)(L)-type dc-dc series-resonant converter with capacitive output filter using fixed frequency control is proposed. The converter operation for different modes is presented using the operating waveforms and equivalent circuit diagrams during different intervals. This converter is modeled and then analyzed using the approximate complex ac circuit analysis approach. Based on the analysis, design curves were obtained and the design procedure is presented with a design example. The designed converter is simulated using PSIM software to predict the performance of the converter for variations in supply voltage and load conditions. The converter operates in ZVS for the inverter switches with minimum input voltage and loses ZVS for two switches in each bridge for higher input voltages.

Multi-terminal High-voltage Converter

Multi-terminal High-voltage Converter PDF Author: Bo Zhang
Publisher: John Wiley & Sons
ISBN: 1119188334
Category : Science
Languages : en
Pages : 222

Get Book Here

Book Description
An all-in-one guide to high-voltage, multi-terminal converters, this book brings together the state of the art and cutting-edge techniques in the various stages of designing and constructing a high-voltage converter. The book includes 9 chapters, and can be classified into three aspects. First, all existing high-voltage converters are introduced, including the conventional two-level converter, and the multi-level converters, such as the modular multi-level converter (MMC). Second, different kinds of multi-terminal high-voltage converters are presented in detail, including the topology, operation principle, control scheme and simulation verification. Third, some common issues of the proposed multi-terminal high-voltage converters are discussed, and different industrial applications of the proposed multi-terminal high-voltage converters are provided. Systematically proposes, for the first time, the design methodology for high-voltage converters in use of MTDC grids; also applicable to constructing novel power electronics converters, and driving the development of HVDC, which is one of the most important technology areas Presents the latest research on multi-terminal high-voltage converters and its application in MTDC transmission systems and other industrially important applications Offers an overview of existing technology and future trends of the high-voltage converter, with extensive discussion and analysis of different types of high-voltage converters and relevant control techniques (including DC-AC, AC-DC, DC-DC, and AC-AC converters) Provides readers with sufficient context to delve into the more specialized topics covered in the book Featuring a series of novel multi-terminal high-voltage converters proposed and patented by the authors, Multi-terminal High Voltage Converters is written for researchers, engineers, and advanced students specializing in power electronics, power system engineering and electrical engineering.

A Novel Class of Hybrid, Soft-switching DC-DC Converters with High Power-density, High Efficiency and Low EMI

A Novel Class of Hybrid, Soft-switching DC-DC Converters with High Power-density, High Efficiency and Low EMI PDF Author: Raja Ayyanar
Publisher:
ISBN:
Category :
Languages : en
Pages : 224

Get Book Here

Book Description


Soft-switched High-frequency Transformer Isolated Single-cell DC-to-DC and Multi-cell AC-to-DC Converters Controlled with a New Gating Scheme Implemented on FPGA

Soft-switched High-frequency Transformer Isolated Single-cell DC-to-DC and Multi-cell AC-to-DC Converters Controlled with a New Gating Scheme Implemented on FPGA PDF Author: Fei Luo
Publisher:
ISBN:
Category : Electric current converters
Languages : en
Pages : 350

Get Book Here

Book Description
This thesis presents the operational principles, and analysis, simulation. experimental results of a single-cell full-bridge high frequency (HF) transformer isolated DC-to-DC power converter with an inductive output filter controlled with a new gating scheme. A single-stage multi-cell HF transformer isolated AC-to-DC power converter with the same new gating scheme is designed and tested. The new gating scheme is implemented in a Field-programmable gate-array (FPGA) chip to generate the control gating signals for the DC-to-DC and AC-to-DC converters. The steady-state operation of the DC-to-DC converter controlled with the new gating scheme is analyzed using the equivalent circuits during different intervals of operation. Based on the operational analysis, a set of equations is derived to draw design curves. A design example of 5 kW, 580 V to 620 V input and 420 V output DC-to-DC converter is given to present the design procedure. PSPICE simulation and experimental results obtained from an experimental converter controlled with the FPGA are provided to verify the theoretical analysis, and design procedure. A systematical procedure for finding the parameters of the output RCD snubber circuit is also given. A 3 kW 3-cell 166 V to 260 V input 420 V output single-stage HF transformer isolated AC-to-DC multi-cell converter is designed and tested using a FPGA controllerThe new gating scheme is implemented on a Xilinx Spartan 11 FPGA chip using two digital pulse-width modulation (DPWM) approaches, the conventional DPWM module and the delay-line DPWM module. The simulation and experimental results are presented.

Soft-switched High-frequency Transformer Isolated Single-cell DC-to-DC and Multi-cell AC-to-DC Converters Controlled with a New Gating Scheme Implemented on FPGA.

Soft-switched High-frequency Transformer Isolated Single-cell DC-to-DC and Multi-cell AC-to-DC Converters Controlled with a New Gating Scheme Implemented on FPGA. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis presents the operational principles, and analysis, simulation. experimental results of a single-cell full-bridge high frequency (HF) transformer isolated DC-to-DC power converter with an inductive output filter controlled with a new gating scheme. A single-stage multi-cell HF transformer isolated AC-to-DC power converter with the same new gating scheme is designed and tested. The new gating scheme is implemented in a Field-programmable gate-array (FPGA) chip to generate the control gating signals for the DC-to-DC and AC-to-DC converters. The steady-state operation of the DC-to-DC converter controlled with the new gating scheme is analyzed using the equivalent circuits during different intervals of operation. Based on the operational analysis, a set of equations is derived to draw design curves. A design example of 5 kW, 580 V to 620 V input and 420 V output DC-to-DC converter is given to present the design procedure. PSPICE simulation and experimental results obtained from an experimental converter controlled with the FPGA are provided to verify the theoretical analysis, and design procedure. A systematical procedure for finding the parameters of the output RCD snubber circuit is also given. A 3 kW 3-cell 166 V to 260 V input 420 V output single-stage HF transformer isolated AC-to-DC multi-cell converter is designed and tested using a FPGA controller The new gating scheme is implemented on a Xilinx Spartan 11 FPGA chip using two digital pulse-width modulation (DPWM) approaches, the conventional DPWM module and the delay-line DPWM module. The simulation and experimental results are presented.