Author: L.-M. Peng
Publisher: Oxford University Press, USA
ISBN: 9780198500742
Category : Science
Languages : en
Pages : 580
Book Description
This book is an in-depth treatment of the theoretical background relevant to an understanding of materials that can be obtained by using high-energy electron diffraction and microscopy.
High Energy Electron Diffraction and Microscopy
Author: L.-M. Peng
Publisher: Oxford University Press, USA
ISBN: 9780198500742
Category : Science
Languages : en
Pages : 580
Book Description
This book is an in-depth treatment of the theoretical background relevant to an understanding of materials that can be obtained by using high-energy electron diffraction and microscopy.
Publisher: Oxford University Press, USA
ISBN: 9780198500742
Category : Science
Languages : en
Pages : 580
Book Description
This book is an in-depth treatment of the theoretical background relevant to an understanding of materials that can be obtained by using high-energy electron diffraction and microscopy.
High Energy Electron Diffraction and Microscopy
Author: L. M. Peng
Publisher: Oxford University Press
ISBN: 0191004782
Category : Science
Languages : en
Pages : 558
Book Description
This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using a general matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to familiarize the reader with practical applications. Diffuse and inelastic scattering and coherence effects are treated comprehensively both as a perturbation of elastic scattering and within the general multiple scattering quantum mechanical framework of the density matrix method. Among the highlights are the treatment of resonance diffraction of electrons, HOLZ diffraction, the formation of Kikuchi bands and lines and ring patterns, and application of diffraction to monitoring of growing surfaces. Useful practical data are summarised in tables including those of electron scattering factors for all the neutral atoms and many ions, and the temperature dependent Debye-Waller factors given for over 100 elemental crystals and compounds.
Publisher: Oxford University Press
ISBN: 0191004782
Category : Science
Languages : en
Pages : 558
Book Description
This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using a general matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to familiarize the reader with practical applications. Diffuse and inelastic scattering and coherence effects are treated comprehensively both as a perturbation of elastic scattering and within the general multiple scattering quantum mechanical framework of the density matrix method. Among the highlights are the treatment of resonance diffraction of electrons, HOLZ diffraction, the formation of Kikuchi bands and lines and ring patterns, and application of diffraction to monitoring of growing surfaces. Useful practical data are summarised in tables including those of electron scattering factors for all the neutral atoms and many ions, and the temperature dependent Debye-Waller factors given for over 100 elemental crystals and compounds.
Reflection High-Energy Electron Diffraction
Author: Ayahiko Ichimiya
Publisher: Cambridge University Press
ISBN: 9780521453738
Category : Science
Languages : en
Pages : 370
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521453738
Category : Science
Languages : en
Pages : 370
Book Description
Publisher Description
Elastic and Inelastic Scattering in Electron Diffraction and Imaging
Author: Zhong-lin Wang
Publisher: Springer Science & Business Media
ISBN: 1489915796
Category : Science
Languages : en
Pages : 461
Book Description
Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.
Publisher: Springer Science & Business Media
ISBN: 1489915796
Category : Science
Languages : en
Pages : 461
Book Description
Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.
Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces
Author: P.K. Larsen
Publisher: Springer Science & Business Media
ISBN: 146845580X
Category : Science
Languages : en
Pages : 526
Book Description
This volume contains the papers presented at the NATO Advanced Research Workshop in "Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces" held at the Koningshof conference center, Veldhoven, the Netherlands, June 15-19, 1987. The main topics of the workshop, Reflection High Energy Electron Diffraction (RHEED) and Reflection Electron Microscopy (REM), have a common basis in the diffraction processes which high energy electrons undergo when they interact with solid surfaces at grazing angles. However, while REM is a new technique developed on the basis of recent advances in transmission electron microscopy, RHEED is an old method in surface crystallography going back to the discovery of electron diffraction in 1927 by Davisson and Germer. Until the development of ultra high vacuum techniques in the 1960's made instruments using slow electrons more accessable, RHEED was the dominating electron diffraction technique. Since then and until recently the method of Low Energy Electron Diffraction (LEED) largely surpassed RHEED in popularity in surface studies. The two methods are closely related of course, each with its own specific advantages. The grazing angle geometry of RHEED has now become a very useful feature because this makes it ideally suited for combination with the thin growth technique of Molecular Beam Epitaxy (MBE). This combination allows in-situ studies of freshly grown and even growing surfaces, opening up new areas of research of both fundamental and technological importance.
Publisher: Springer Science & Business Media
ISBN: 146845580X
Category : Science
Languages : en
Pages : 526
Book Description
This volume contains the papers presented at the NATO Advanced Research Workshop in "Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces" held at the Koningshof conference center, Veldhoven, the Netherlands, June 15-19, 1987. The main topics of the workshop, Reflection High Energy Electron Diffraction (RHEED) and Reflection Electron Microscopy (REM), have a common basis in the diffraction processes which high energy electrons undergo when they interact with solid surfaces at grazing angles. However, while REM is a new technique developed on the basis of recent advances in transmission electron microscopy, RHEED is an old method in surface crystallography going back to the discovery of electron diffraction in 1927 by Davisson and Germer. Until the development of ultra high vacuum techniques in the 1960's made instruments using slow electrons more accessable, RHEED was the dominating electron diffraction technique. Since then and until recently the method of Low Energy Electron Diffraction (LEED) largely surpassed RHEED in popularity in surface studies. The two methods are closely related of course, each with its own specific advantages. The grazing angle geometry of RHEED has now become a very useful feature because this makes it ideally suited for combination with the thin growth technique of Molecular Beam Epitaxy (MBE). This combination allows in-situ studies of freshly grown and even growing surfaces, opening up new areas of research of both fundamental and technological importance.
Compendium of Surface and Interface Analysis
Author: The Surface Science Society of Japan
Publisher: Springer
ISBN: 9811061564
Category : Technology & Engineering
Languages : en
Pages : 807
Book Description
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
Publisher: Springer
ISBN: 9811061564
Category : Technology & Engineering
Languages : en
Pages : 807
Book Description
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
Scanning Transmission Electron Microscopy
Author: Stephen J. Pennycook
Publisher: Springer Science & Business Media
ISBN: 1441972005
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
Publisher: Springer Science & Business Media
ISBN: 1441972005
Category : Technology & Engineering
Languages : en
Pages : 764
Book Description
Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.
Interaction of Atoms and Molecules with Solid Surfaces
Author: V. Bortolani
Publisher: Springer Science & Business Media
ISBN: 1468487779
Category : Science
Languages : en
Pages : 693
Book Description
There is considerable interest, both fundamental and technological, in the way atoms and molecules interact with solid surfaces. Thus the description of heterogeneous catalysis and other surface reactions requires a detailed understand ing of molecule-surface interactions. The primary aim of this volume is to provide fairly broad coverage of atoms and molecules in interaction with a variety of solid surfaces at a level suitable for graduate students and research workers in condensed matter physics, chemical physics, and materials science. The book is intended for experimental workers with interests in basic theory and concepts and had its origins in a Spring College held at the International Centre for Theoretical Physics, Miramare, Trieste. Valuable background reading can be found in the graduate-Ievel introduction to the physics of solid surfaces by ZangwilI(1) and in the earlier works by Garcia Moliner and F1ores(2) and Somorjai.(3) For specifically molecule-surface interac tions, additional background can be found in Rhodin and Ertl(4) and March.(S) V. Bortolani N. H. March M. P. Tosi References 1. A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge (1988). 2. F. Garcia-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, Cambridge (1979). 3. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, New York (1981). 4. T. N. Rhodin and G. Erd, The Nature of the Surface Chemical Bond, North-Holland, Amsterdam (1979). 5. N. H. March, Chemical Bonds outside Metal Surfaces, Plenum Press, New York (1986).
Publisher: Springer Science & Business Media
ISBN: 1468487779
Category : Science
Languages : en
Pages : 693
Book Description
There is considerable interest, both fundamental and technological, in the way atoms and molecules interact with solid surfaces. Thus the description of heterogeneous catalysis and other surface reactions requires a detailed understand ing of molecule-surface interactions. The primary aim of this volume is to provide fairly broad coverage of atoms and molecules in interaction with a variety of solid surfaces at a level suitable for graduate students and research workers in condensed matter physics, chemical physics, and materials science. The book is intended for experimental workers with interests in basic theory and concepts and had its origins in a Spring College held at the International Centre for Theoretical Physics, Miramare, Trieste. Valuable background reading can be found in the graduate-Ievel introduction to the physics of solid surfaces by ZangwilI(1) and in the earlier works by Garcia Moliner and F1ores(2) and Somorjai.(3) For specifically molecule-surface interac tions, additional background can be found in Rhodin and Ertl(4) and March.(S) V. Bortolani N. H. March M. P. Tosi References 1. A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge (1988). 2. F. Garcia-Moliner and F. Flores, Introduction to the Theory of Solid Surfaces, Cambridge University Press, Cambridge (1979). 3. G. A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, New York (1981). 4. T. N. Rhodin and G. Erd, The Nature of the Surface Chemical Bond, North-Holland, Amsterdam (1979). 5. N. H. March, Chemical Bonds outside Metal Surfaces, Plenum Press, New York (1986).
Surface Microscopy with Low Energy Electrons
Author: Ernst Bauer
Publisher: Springer
ISBN: 1493909355
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques also include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.
Publisher: Springer
ISBN: 1493909355
Category : Technology & Engineering
Languages : en
Pages : 513
Book Description
This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques also include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.
Materials Discovery and Design
Author: Turab Lookman
Publisher: Springer
ISBN: 3319994654
Category : Science
Languages : en
Pages : 266
Book Description
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
Publisher: Springer
ISBN: 3319994654
Category : Science
Languages : en
Pages : 266
Book Description
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.