High Efficiency Thin Film CdTe and A-Si Based Solar Cells

High Efficiency Thin Film CdTe and A-Si Based Solar Cells PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
This report describes the research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Implemented a diode-array spectrograph system and used optical emission spectroscopy to help optimize the reactive sputtering of N-doped ZnTe for CdTe back-contact structures. Identified the photoluminescence signatures of various defect states in CdTe related to Cd vacancies, CuCd acceptors, Cu-VCd complexes, and donor-acceptor pairs, and related these states to instabilities in the hole concentration at room temperature. Showed that Cu is an important non-radiative center in CdS, reducing the PL efficiency. Studied band tailing in CdS weakly alloyed with CdTe and CdTe weakly alloyed with CdS. Fabricated superstrate ITO/CdS/CdTe cells on Mo substrates with efficiencies above 7.5%. Collaborated in studies of EXAFS of Cu in CdTe which indicate a Cu-Te bond length of 2.62 Å or 6.7% shorter than the CdTe, bond in agreement with calculations of Wei et al. Provided assistance to two groups on laser scribing. Comparatively studied the performance of a-SiGe solar cells and properties of a-SiGe single-layer films deposited using a wide range of H dilution, observed transition from a-SiGe to [mu]c-SiGe at high H dilution and the impact on cell performances. Comparatively studied the performance of a-SiGe solar cells and properties of a-SiGe single-layer films with different Ge contents, suitable for use as component cells of triple-junction devices. Fabricated a-Si-based solar cells on ultra-thin stainless-steel substrate (7.5 micron) and obtained equivalent performance and yield as on the regular SS substrates (127 microns). Comparatively studied the performance of a-Si-based solar cells on SS substrates and on SnO2-coated glass substrates. Studied the performance of p-layers deposited under various deposition conditions for n-i-p type solar cells. Performed an analysis for the component cell current-matching within a triple-junction solar cell.

High Efficiency Thin Film CdTe and A-Si Based Solar Cells

High Efficiency Thin Film CdTe and A-Si Based Solar Cells PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
This report describes the research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Implemented a diode-array spectrograph system and used optical emission spectroscopy to help optimize the reactive sputtering of N-doped ZnTe for CdTe back-contact structures. Identified the photoluminescence signatures of various defect states in CdTe related to Cd vacancies, CuCd acceptors, Cu-VCd complexes, and donor-acceptor pairs, and related these states to instabilities in the hole concentration at room temperature. Showed that Cu is an important non-radiative center in CdS, reducing the PL efficiency. Studied band tailing in CdS weakly alloyed with CdTe and CdTe weakly alloyed with CdS. Fabricated superstrate ITO/CdS/CdTe cells on Mo substrates with efficiencies above 7.5%. Collaborated in studies of EXAFS of Cu in CdTe which indicate a Cu-Te bond length of 2.62 Å or 6.7% shorter than the CdTe, bond in agreement with calculations of Wei et al. Provided assistance to two groups on laser scribing. Comparatively studied the performance of a-SiGe solar cells and properties of a-SiGe single-layer films deposited using a wide range of H dilution, observed transition from a-SiGe to [mu]c-SiGe at high H dilution and the impact on cell performances. Comparatively studied the performance of a-SiGe solar cells and properties of a-SiGe single-layer films with different Ge contents, suitable for use as component cells of triple-junction devices. Fabricated a-Si-based solar cells on ultra-thin stainless-steel substrate (7.5 micron) and obtained equivalent performance and yield as on the regular SS substrates (127 microns). Comparatively studied the performance of a-Si-based solar cells on SS substrates and on SnO2-coated glass substrates. Studied the performance of p-layers deposited under various deposition conditions for n-i-p type solar cells. Performed an analysis for the component cell current-matching within a triple-junction solar cell.

Thin-Film Solar Cells

Thin-Film Solar Cells PDF Author: Yoshihiro Hamakawa
Publisher: Springer Science & Business Media
ISBN: 3662105497
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book Here

Book Description
The first comprehensive book on thin-film solar cells, potentially a key technology for solving the energy production problem in the 21st century in an environmentally friendly way. It covers a wide range of scientific and technological aspects of thin film semiconductors - deposition technologies, growth mechanisms and the basic properties of amorphous and nano-crystalline silicon - as well as the optimum design theory and device physics of high-efficiency solar cells, especially of single-junction and multi-junction solar cells. The development of large-area solar cell modules using single and multi-junction solar cells is also considered. Examples of recent photovoltaic systems are presented and analysed.

High efficiency thin film CdTe and a-Si based solar cells

High efficiency thin film CdTe and a-Si based solar cells PDF Author: A. D. Compaan
Publisher:
ISBN:
Category : Photovoltaic cells
Languages : en
Pages :

Get Book Here

Book Description


Silicon Heterojunction Solar Cells

Silicon Heterojunction Solar Cells PDF Author: W.R. Fahrner
Publisher: Trans Tech Publications Ltd
ISBN: 3038131024
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Thin Film Solar Cells

Thin Film Solar Cells PDF Author: K. L. Chopra
Publisher: Springer Science & Business Media
ISBN: 1489904182
Category : Science
Languages : en
Pages : 615

Get Book Here

Book Description
"You, 0 Sun, are the eye of the world You are the soul of all embodied beings You are the source of all creatures You are the discipline of all engaged in work" - Translated from Mahabharata 3rd Century BC Today, energy is the lifeline and status symbol of "civilized" societies. All nations have therefore embarked upon Research and Development pro grams of varying magnitudes to explore and effectively utilize renewable sources of energy. Albeit a low-grade energy with large temporal and spatial variations, solar energy is abundant, cheap, clean, and renewable, and thus presents a very attractive alternative source. The direct conver sion of solar energy to electricity (photovoltaic effect) via devices called solar cells has already become an established frontier area of science and technology. Born out of necessity for remote area applications, the first commercially manufactured solar cells - single-crystal silicon and thin film CdS/Cu2S - were available well over 20 years ago. Indeed, all space vehicles today are powered by silicon solar cells. But large-scale terrestrial applications of solar cells still await major breakthroughs in terms of discovering new and radical concepts in solar cell device structures, utilizing relatively more abundant, cheap, and even exotic materials, and inventing simpler and less energy intensive fabrication processes. No doubt, this extraordinary challenge in R/D has led to a virtual explosion of activities in the field of photovoltaics in the last several years.

Solar Cells and Modules

Solar Cells and Modules PDF Author: Arvind Shah
Publisher: Springer Nature
ISBN: 3030464873
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

High Efficiency Thin Film CdTe and A-Si Based Solar Cells

High Efficiency Thin Film CdTe and A-Si Based Solar Cells PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and (approximately)9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS(subscript x)Te{sub 1-x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS(subscript x)Te{sub 1-x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ((approximately)2 x 10−5 torr) was beneficial for growing high-quality films from ITO targets.

Fundamentals Of Solar Cells

Fundamentals Of Solar Cells PDF Author: Alan Fahrenbruch
Publisher: Elsevier
ISBN: 0323145388
Category : Technology & Engineering
Languages : en
Pages : 580

Get Book Here

Book Description
Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion provides an introduction to the fundamental physical principles of solar cells. It aims to promote the expansion of solar photovoltaics from relatively small and specialized use to a large-scale contribution to energy supply. The book begins with a review of basic concepts such as the source of energy, the role of photovoltaic conversion, the development of photovoltaic cells, and sequence of phenomena involved in solar power generation. This is followed by separate chapters on each of the processes that take place in solar cell. These include solar input; properties of semiconductors; recombination and the flow of photogenerated carriers; charge separation and the characteristics of junction barriers; and calculation of solar efficiency. Subsequent chapters deal with the operation of specific solar cell devices such as a single-crystal homojunction (Si); a single-crystal-heterojunction/buried-homojunction (AlGaAs/GaAs); and a polycrystalline, thin-film cell (CuxS/CdS). This book is intended for upper-level graduate students who have a reasonably good understanding of solid state physics and for scientists and engineers involved in research and development of solar cells.

Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578

Get Book Here

Book Description
Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

High efficiency thin film CdTe and a-Si based solar cells

High efficiency thin film CdTe and a-Si based solar cells PDF Author: A. D. Compaan
Publisher:
ISBN:
Category : Photovoltaic cells
Languages : en
Pages :

Get Book Here

Book Description