High-contrast laser-driven monoenergetic proton beams and near-critical density plasma diagnosis

High-contrast laser-driven monoenergetic proton beams and near-critical density plasma diagnosis PDF Author: Mingyuan Shi
Publisher:
ISBN:
Category :
Languages : de
Pages : 0

Get Book Here

Book Description
In this dissertation, the experiments are conducted at the Jenaer Titanium: Sapphire 200 Terawatt Laser System (JETi200) located in Jena, Germany. With its excellent temporal contrast, the few-nanometer freestanding target can remain in a solid state for a few picoseconds before the main pulse arrives, greatly reducing the pre-expansion of the target. The resulting proton beams exhibit distinctive features in terms of cut-off energy and energy spectrum distribution. The proton beams in the presented experiment show a more than 30 MeV monoenergetic peak under the circularly polarized laser, and the highest peak particle kinetic energy per Joule of laser energy is around 20MeV/J. As opposed to the circularly polarized driving light, the cut-off energy shows weak dependence on the target thickness when irradiated with linearly polarized light. Moreover, the implementation of a transmission light diagnostic in the experiment indicates that the transmission light of the main pulse is significantly weaker than that in other similar experiments. The energy and energy spectrum of the protons provide the potential to conduct in vivo research and proton skin therapy using the Terawatt-level laser system. Laser contrast significantly impacts laser-driven ion acceleration, as low contrast can lead to premature expansion of thin targets. The evolution of premature expansion, caused by pre-pulses, is primarily based on numerical calculations research. However, in this paper, I conduct a comprehensive experimental study of pre-pulse-induced pre-plasma evolution, including the measurement of pre-plasma evolution time and comparison with a previous numerical model. This investigation is especially beneficial for the latest generation of laser ion accelerators, as it enables the precise quantification of temporal contrast requirements in the Petawatt laser driver era.

High-contrast laser-driven monoenergetic proton beams and near-critical density plasma diagnosis

High-contrast laser-driven monoenergetic proton beams and near-critical density plasma diagnosis PDF Author: Mingyuan Shi
Publisher:
ISBN:
Category :
Languages : de
Pages : 0

Get Book Here

Book Description
In this dissertation, the experiments are conducted at the Jenaer Titanium: Sapphire 200 Terawatt Laser System (JETi200) located in Jena, Germany. With its excellent temporal contrast, the few-nanometer freestanding target can remain in a solid state for a few picoseconds before the main pulse arrives, greatly reducing the pre-expansion of the target. The resulting proton beams exhibit distinctive features in terms of cut-off energy and energy spectrum distribution. The proton beams in the presented experiment show a more than 30 MeV monoenergetic peak under the circularly polarized laser, and the highest peak particle kinetic energy per Joule of laser energy is around 20MeV/J. As opposed to the circularly polarized driving light, the cut-off energy shows weak dependence on the target thickness when irradiated with linearly polarized light. Moreover, the implementation of a transmission light diagnostic in the experiment indicates that the transmission light of the main pulse is significantly weaker than that in other similar experiments. The energy and energy spectrum of the protons provide the potential to conduct in vivo research and proton skin therapy using the Terawatt-level laser system. Laser contrast significantly impacts laser-driven ion acceleration, as low contrast can lead to premature expansion of thin targets. The evolution of premature expansion, caused by pre-pulses, is primarily based on numerical calculations research. However, in this paper, I conduct a comprehensive experimental study of pre-pulse-induced pre-plasma evolution, including the measurement of pre-plasma evolution time and comparison with a previous numerical model. This investigation is especially beneficial for the latest generation of laser ion accelerators, as it enables the precise quantification of temporal contrast requirements in the Petawatt laser driver era.

Relativistically Intense Laser–Microplasma Interactions

Relativistically Intense Laser–Microplasma Interactions PDF Author: Tobias Ostermayr
Publisher: Springer
ISBN: 303022208X
Category : Science
Languages : en
Pages : 166

Get Book Here

Book Description
This dissertation covers several important aspects of relativistically intense laser–microplasma interactions and some potential applications. A Paul-trap based target system was developed to provide fully isolated, well defined and well positioned micro-sphere-targets for experiments with focused peta-watt laser pulses. The laser interaction turned such targets into microplasmas, emitting proton beams with kinetic energies exceeding 10 MeV. The proton beam kinetic energy spectrum and spatial distribution were tuned by variation of the acceleration mechanism, reaching from broadly distributed spectra in relatively cold plasma expansions to spectra with relative energy spread as small as 20% in spherical multi-species Coulomb explosions and in directed acceleration processes. Numerical simulations and analytical calculations support these experimental findings and show how microplasmas may be used to engineer laser-driven proton sources. In a second effort, tungsten micro-needle-targets were used at a peta-watt laser to produce few-keV x-rays and 10-MeV-level proton beams simultaneously, both measured to have only few-μm effective source-size. This source was used to demonstrate single-shot simultaneous radiographic imaging with x-rays and protons of biological and technological samples. Finally, the dissertation discusses future perspectives and directions for laser–microplasma interactions including non-spherical target shapes, as well as thoughts on experimental techniques and advanced quantitative image evaluation for the laser driven radiography.

Investigations of Field Dynamics in Laser Plasmas with Proton Imaging

Investigations of Field Dynamics in Laser Plasmas with Proton Imaging PDF Author: Thomas Sokollik
Publisher: Springer Science & Business Media
ISBN: 3642150403
Category : Science
Languages : en
Pages : 126

Get Book Here

Book Description
Laser-driven proton beams are still in their infancy but already have some outstanding attributes compared to those produced in conventional accelerators. One such attribute is the typically low beam emittance. This allows excellent resolution in imaging applications like proton radiography. This thesis describes a novel imaging technique - the proton streak camera - that the author developed and first used to measure both the spatial and temporal evolution of ultra-strong electrical fields in laser-driven plasmas. Such investigations are of paramount importance for the understanding of laser-plasma interactions and, thus, for optimization of laser-driven particle acceleration. In particular, the present work investigated micrometer-sized spherical targets after laser irradiation. The confined geometry of plasmas and fields was found to influence the kinetic energy and spatial distribution of accelerated ions. This could be shown both in experimental radiography images and and in numerical simulations, one of which was selected for the cover page of Physical Review Letters.

Laser-Driven Relativistic Plasmas Applied to Science, Industry and Medicine

Laser-Driven Relativistic Plasmas Applied to Science, Industry and Medicine PDF Author: Paul R. Bolton
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 484

Get Book Here

Book Description
Selected papers from the Second International Symposium on Laser-Driven Relativistic Plasmas Applied to Science, Industry and Medicine, which was held at the Kansai Photon Science Institute of the Japan Atomic Energy Agency--P. xii.

Laser-Plasma Interactions

Laser-Plasma Interactions PDF Author: Dino A. Jaroszynski
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454

Get Book Here

Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap

Laser-Driven Sources of High Energy Particles and Radiation

Laser-Driven Sources of High Energy Particles and Radiation PDF Author: Leonida Antonio Gizzi
Publisher: Springer Nature
ISBN: 3030258505
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
This volume presents a selection of articles based on inspiring lectures held at the “Capri” Advanced Summer School, an original event conceived and promoted by Leonida Antonio Gizzi and Ralph Assmann that focuses on novel schemes for plasma-based particle acceleration and radiation sources, and which brings together researchers from the conventional accelerator community and from the high-intensity laser-matter interaction research fields. Training in these fields is highly relevant for ultra-intense lasers and applications, which have enjoyed dramatic growth following the development of major European infrastructures like the Extreme Light Infrastructure (ELI) and the EuPRAXIA project. The articles preserve the tutorial character of the lectures and reflect the latest advances in their respective fields. The volume is mainly intended for PhD students and young researchers getting started in this area, but also for scientists from other fields who are interested in the latest developments. The content will also appeal to radiobiologists and medical physicists, as it includes contributions on potential applications of laser-based particle accelerators.

Laser-driven Proton Beams

Laser-driven Proton Beams PDF Author: Ceri M. Brenner
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This thesis reports on investigations of proton acceleration driven by the interaction of short, intense laser pulses with thin, solid targets. Laser-driven plasma interactions are used to establish accelerating quasi-electrostatic field gradients, on the rear surface of the target, that are orders of magnitude higher than the current limit of conventional, radio-frequency-based accelerator technology. The resulting high energy (multi-MeV) proton beams are highly laminar, have ultra-low emittance, and the inherently broad energy spectrum is particularly effective for use in proton imaging, heating and transmutation applications. This thesis reports on a series of investigations carried out to explore routes towards control of the spectral properties of laser-driven proton sources and optimisation of laser-to-proton energy conversion efficiency. The dependence of laser accelerated proton beam properties on laser energy and focal spot size in the interaction of an intense laser pulse with an ultra-thin foil is explored at laser intensities of 1016-1018 W/cm2. The results indicate that whilst the maximum proton energy is dependent on both these laser pulse parameters, the total number of protons accelerated is primarily related to the laser pulse energy. A modification to current analytical models of the proton acceleration, to take account of lateral transport of electrons on the target rear surface, is suggested to account for the experimental findings. The thesis also reports on an investigation of optical control of laser-driven proton acceleration, in which two relativistically intense laser pulses, narrowly separated in time, are used. This novel approach is shown to deliver a significant enhancement in the coupling of laser energy to medium energy (5-30 MeV) protons, compared to single pulse irradiation. The 'double-pulse' mechanism of proton acceleration is investigated in combination with thin targets, for which refluxing of hot electrons between the target surfaces can lead to optimal conditions for coupling laser drive energy into the proton beam. A high laser-to-proton conversion efficiency is measured when the delay between the pulses is optimised at 1 ps. The subsequent effect of double-pulse drive on the angular distribution of the proton beam is also explored for thick targets.

Plasma Science

Plasma Science PDF Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309677608
Category :
Languages : en
Pages : 291

Get Book Here

Book Description
Plasma Science and Engineering transforms fundamental scientific research into powerful societal applications, from materials processing and healthcare to forecasting space weather. Plasma Science: Enabling Technology, Sustainability, Security and Exploration discusses the importance of plasma research, identifies important grand challenges for the next decade, and makes recommendations on funding and workforce. This publication will help federal agencies, policymakers, and academic leadership understand the importance of plasma research and make informed decisions about plasma science funding, workforce, and research directions.

Topics in Plasma Diagnostics

Topics in Plasma Diagnostics PDF Author: I. Podgornyi
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 240

Get Book Here

Book Description
The present volume is essentially a qualitative survey of modern trends in the diagnostics of high-temperature plasmas, with particular orientation toward laboratory plasmas of interest in connection with research in controlled thermonuclear fusion. Among the broad topics considered are probe diagnostics, optical methods (including the use of lasers and holography), microwave diagnostics, and diagnostics with particle beams. Having infor mation on these methods available in compact form and in one place, as is the case in the present volume, should make it pos sible to evaluate different diagnostic approaches to specific prob lems. The volume will be useful as an introduction for advanced students making their first contact with experimental plasma physics and for physicists and engineers who are entering the field and desire a rapid survey of principles and modern trends in the diagnostics of high-temperature plasmas. v Foreword to the American Edition The material in this book is based on lectures given at Mos cow State University. It is intended to acquaint the reader with the basic aspects of plasma diagnostics and contains information re quired for the experimental physicist who wishes to carry out straightforward measurements of laboratory plasmas. It will be evident that in choosing the material we have been guided pri marily by the scientific interests of the author, and the great bulk of the material is based on work carried out in the USSR.

Manipulation of Laser-generated Energetic Proton Spectra in Near Critical Density Plasma

Manipulation of Laser-generated Energetic Proton Spectra in Near Critical Density Plasma PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description