Author: Robert J Elliott
Publisher: Springer Science & Business Media
ISBN: 0387848541
Category : Science
Languages : en
Pages : 374
Book Description
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.
Hidden Markov Models
Author: Robert J Elliott
Publisher: Springer Science & Business Media
ISBN: 0387848541
Category : Science
Languages : en
Pages : 374
Book Description
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.
Publisher: Springer Science & Business Media
ISBN: 0387848541
Category : Science
Languages : en
Pages : 374
Book Description
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.
Efficient Learning Machines
Author: Mariette Awad
Publisher: Apress
ISBN: 1430259906
Category : Computers
Languages : en
Pages : 263
Book Description
Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.
Publisher: Apress
ISBN: 1430259906
Category : Computers
Languages : en
Pages : 263
Book Description
Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.
Markov Processes for Stochastic Modeling
Author: Oliver Ibe
Publisher: Newnes
ISBN: 0124078397
Category : Mathematics
Languages : en
Pages : 515
Book Description
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Publisher: Newnes
ISBN: 0124078397
Category : Mathematics
Languages : en
Pages : 515
Book Description
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Semi-Markov Chains and Hidden Semi-Markov Models toward Applications
Author: Vlad Stefan Barbu
Publisher: Springer Science & Business Media
ISBN: 0387731733
Category : Mathematics
Languages : en
Pages : 233
Book Description
Here is a work that adds much to the sum of our knowledge in a key area of science today. It is concerned with the estimation of discrete-time semi-Markov and hidden semi-Markov processes. A unique feature of the book is the use of discrete time, especially useful in some specific applications where the time scale is intrinsically discrete. The models presented in the book are specifically adapted to reliability studies and DNA analysis. The book is mainly intended for applied probabilists and statisticians interested in semi-Markov chains theory, reliability and DNA analysis, and for theoretical oriented reliability and bioinformatics engineers.
Publisher: Springer Science & Business Media
ISBN: 0387731733
Category : Mathematics
Languages : en
Pages : 233
Book Description
Here is a work that adds much to the sum of our knowledge in a key area of science today. It is concerned with the estimation of discrete-time semi-Markov and hidden semi-Markov processes. A unique feature of the book is the use of discrete time, especially useful in some specific applications where the time scale is intrinsically discrete. The models presented in the book are specifically adapted to reliability studies and DNA analysis. The book is mainly intended for applied probabilists and statisticians interested in semi-Markov chains theory, reliability and DNA analysis, and for theoretical oriented reliability and bioinformatics engineers.
Hidden Markov Models for Time Series
Author: Walter Zucchini
Publisher: CRC Press
ISBN: 1482253844
Category : Mathematics
Languages : en
Pages : 370
Book Description
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
Publisher: CRC Press
ISBN: 1482253844
Category : Mathematics
Languages : en
Pages : 370
Book Description
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
Inference in Hidden Markov Models
Author: Olivier Cappé
Publisher: Springer Science & Business Media
ISBN: 0387289828
Category : Mathematics
Languages : en
Pages : 656
Book Description
This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.
Publisher: Springer Science & Business Media
ISBN: 0387289828
Category : Mathematics
Languages : en
Pages : 656
Book Description
This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.
Hidden Markov Models in Finance
Author: Rogemar S. Mamon
Publisher: Springer Science & Business Media
ISBN: 0387711635
Category : Business & Economics
Languages : en
Pages : 203
Book Description
A number of methodologies have been employed to provide decision making solutions globalized markets. Hidden Markov Models in Finance offers the first systematic application of these methods to specialized financial problems: option pricing, credit risk modeling, volatility estimation and more. The book provides tools for sorting through turbulence, volatility, emotion, chaotic events – the random "noise" of financial markets – to analyze core components.
Publisher: Springer Science & Business Media
ISBN: 0387711635
Category : Business & Economics
Languages : en
Pages : 203
Book Description
A number of methodologies have been employed to provide decision making solutions globalized markets. Hidden Markov Models in Finance offers the first systematic application of these methods to specialized financial problems: option pricing, credit risk modeling, volatility estimation and more. The book provides tools for sorting through turbulence, volatility, emotion, chaotic events – the random "noise" of financial markets – to analyze core components.
Labelled Markov Processes
Author: Prakash Panangaden
Publisher: Imperial College Press
ISBN: 1848162898
Category : Mathematics
Languages : en
Pages : 212
Book Description
Labelled Markov processes are probabilistic versions of labelled transition systems with continuous state spaces. The book covers basic probability and measure theory on continuous state spaces and then develops the theory of LMPs.
Publisher: Imperial College Press
ISBN: 1848162898
Category : Mathematics
Languages : en
Pages : 212
Book Description
Labelled Markov processes are probabilistic versions of labelled transition systems with continuous state spaces. The book covers basic probability and measure theory on continuous state spaces and then develops the theory of LMPs.
Markov Chains: Models, Algorithms and Applications
Author: Wai-Ki Ching
Publisher: Springer Science & Business Media
ISBN: 038729337X
Category : Mathematics
Languages : en
Pages : 212
Book Description
Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems over time. This monograph will present a series of Markov models, starting from the basic models and then building up to higher-order models. Included in the higher-order discussions are multivariate models, higher-order multivariate models, and higher-order hidden models. In each case, the focus is on the important kinds of applications that can be made with the class of models being considered in the current chapter. Special attention is given to numerical algorithms that can efficiently solve the models. Therefore, Markov Chains: Models, Algorithms and Applications outlines recent developments of Markov chain models for modeling queueing sequences, Internet, re-manufacturing systems, reverse logistics, inventory systems, bio-informatics, DNA sequences, genetic networks, data mining, and many other practical systems.
Publisher: Springer Science & Business Media
ISBN: 038729337X
Category : Mathematics
Languages : en
Pages : 212
Book Description
Markov chains are a particularly powerful and widely used tool for analyzing a variety of stochastic (probabilistic) systems over time. This monograph will present a series of Markov models, starting from the basic models and then building up to higher-order models. Included in the higher-order discussions are multivariate models, higher-order multivariate models, and higher-order hidden models. In each case, the focus is on the important kinds of applications that can be made with the class of models being considered in the current chapter. Special attention is given to numerical algorithms that can efficiently solve the models. Therefore, Markov Chains: Models, Algorithms and Applications outlines recent developments of Markov chain models for modeling queueing sequences, Internet, re-manufacturing systems, reverse logistics, inventory systems, bio-informatics, DNA sequences, genetic networks, data mining, and many other practical systems.
Markov Processes and Applications
Author: Etienne Pardoux
Publisher: John Wiley & Sons
ISBN: 0470721863
Category : Mathematics
Languages : en
Pages : 322
Book Description
"This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illuminating examples. This book will be extremely useful to anybody teaching a course on Markov processes." Jean-François Le Gall, Professor at Université de Paris-Orsay, France. Markov processes is the class of stochastic processes whose past and future are conditionally independent, given their present state. They constitute important models in many applied fields. After an introduction to the Monte Carlo method, this book describes discrete time Markov chains, the Poisson process and continuous time Markov chains. It also presents numerous applications including Markov Chain Monte Carlo, Simulated Annealing, Hidden Markov Models, Annotation and Alignment of Genomic sequences, Control and Filtering, Phylogenetic tree reconstruction and Queuing networks. The last chapter is an introduction to stochastic calculus and mathematical finance. Features include: The Monte Carlo method, discrete time Markov chains, the Poisson process and continuous time jump Markov processes. An introduction to diffusion processes, mathematical finance and stochastic calculus. Applications of Markov processes to various fields, ranging from mathematical biology, to financial engineering and computer science. Numerous exercises and problems with solutions to most of them
Publisher: John Wiley & Sons
ISBN: 0470721863
Category : Mathematics
Languages : en
Pages : 322
Book Description
"This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illuminating examples. This book will be extremely useful to anybody teaching a course on Markov processes." Jean-François Le Gall, Professor at Université de Paris-Orsay, France. Markov processes is the class of stochastic processes whose past and future are conditionally independent, given their present state. They constitute important models in many applied fields. After an introduction to the Monte Carlo method, this book describes discrete time Markov chains, the Poisson process and continuous time Markov chains. It also presents numerous applications including Markov Chain Monte Carlo, Simulated Annealing, Hidden Markov Models, Annotation and Alignment of Genomic sequences, Control and Filtering, Phylogenetic tree reconstruction and Queuing networks. The last chapter is an introduction to stochastic calculus and mathematical finance. Features include: The Monte Carlo method, discrete time Markov chains, the Poisson process and continuous time jump Markov processes. An introduction to diffusion processes, mathematical finance and stochastic calculus. Applications of Markov processes to various fields, ranging from mathematical biology, to financial engineering and computer science. Numerous exercises and problems with solutions to most of them