Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results

Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781724003515
Category : Science
Languages : en
Pages : 30

Get Book

Book Description
A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels. Bunker, Ronald S. and Bailey, Jeremy C. and Ameri, Ali A. Glenn Research Center NASA/CR-1999-209152, NAS 1.26:209152, E-11660, ASME-99-GT-169

Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results

Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781724003515
Category : Science
Languages : en
Pages : 30

Get Book

Book Description
A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels. Bunker, Ronald S. and Bailey, Jeremy C. and Ameri, Ali A. Glenn Research Center NASA/CR-1999-209152, NAS 1.26:209152, E-11660, ASME-99-GT-169

Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 2; Simulation Results

Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 2; Simulation Results PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721183678
Category :
Languages : en
Pages : 26

Get Book

Book Description
A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines (>1OOMW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip were considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade. Ameri, A. A. and Bunker, R. S. Glenn Research Center NASA/CR-1999-209151/PT2, NAS 1.26:209151/PT2, E-11656/PT2, ASME 99-GT-283/PT2

Gas Turbine Heat Transfer and Cooling Technology

Gas Turbine Heat Transfer and Cooling Technology PDF Author: Je-Chin Han
Publisher: Taylor & Francis
ISBN: 1466564903
Category : Science
Languages : en
Pages : 865

Get Book

Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selec

Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine

Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book

Book Description


Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped with a Mean-Camberline Strip

Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped with a Mean-Camberline Strip PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721262274
Category :
Languages : en
Pages : 26

Get Book

Book Description
Experimental and computational studies have been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines (greater than 100 MW) In a previous work the numerical heat transfer results for a sharp edge blade tip and a radiused blade tip were presented. More recently several other tip treatments have been considered for which the tip heat transfer has been measured and documented. This paper is concerned with the numerical prediction of the tip surface heat transfer for radiused blade tip equipped with mean-camberline strip (or "squealer" as it is often called). The heat transfer results are compared with the experimental results and discussed. The effectiveness of the mean-camberline strip in reducing the tip leakage and the tip heat transfer as compared to a radiused edge tip and sharp edge tip was studied. The calculations show that the sharp edge tip works best (among the cases considered) in reducing the tip leakage flow and the tip heat transfer. Ameri, A.A. Glenn Research Center NASA/CR-2001-210764, NAS 1.26:210764, E-12693, Rept-2001-GT-0156

Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped with a Mean-Camberline Strip

Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped with a Mean-Camberline Strip PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book

Book Description


Monthly Catalog of United States Government Publications

Monthly Catalog of United States Government Publications PDF Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 658

Get Book

Book Description


ASME Technical Papers

ASME Technical Papers PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 412

Get Book

Book Description


Paper

Paper PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 506

Get Book

Book Description


Journal of Heat Transfer

Journal of Heat Transfer PDF Author:
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 396

Get Book

Book Description