Author: B. Opic
Publisher:
ISBN: 9780608035987
Category :
Languages : en
Pages : 351
Book Description
Hardy-Type Inequalities
Author: B. Opic
Publisher:
ISBN: 9780608035987
Category :
Languages : en
Pages : 351
Book Description
Publisher:
ISBN: 9780608035987
Category :
Languages : en
Pages : 351
Book Description
Weighted Inequalities of Hardy Type
Author: Alois Kufner
Publisher: World Scientific
ISBN: 9789812381958
Category : Mathematics
Languages : en
Pages : 380
Book Description
Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new fields such as higher order and fractional order Hardy type inequalities and integral inequalities on the cone of monotone functions together with some applications and open problems. The book can serve as a reference and a source of inspiration for researchers working in these and related areas, but could also be used for advanced graduate courses.
Publisher: World Scientific
ISBN: 9789812381958
Category : Mathematics
Languages : en
Pages : 380
Book Description
Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new fields such as higher order and fractional order Hardy type inequalities and integral inequalities on the cone of monotone functions together with some applications and open problems. The book can serve as a reference and a source of inspiration for researchers working in these and related areas, but could also be used for advanced graduate courses.
Hardy Inequalities on Homogeneous Groups
Author: Michael Ruzhansky
Publisher: Springer
ISBN: 303002895X
Category : Mathematics
Languages : en
Pages : 579
Book Description
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
Publisher: Springer
ISBN: 303002895X
Category : Mathematics
Languages : en
Pages : 579
Book Description
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
The Analysis and Geometry of Hardy's Inequality
Author: Alexander A. Balinsky
Publisher: Springer
ISBN: 3319228706
Category : Mathematics
Languages : en
Pages : 277
Book Description
This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz’ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy’s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.
Publisher: Springer
ISBN: 3319228706
Category : Mathematics
Languages : en
Pages : 277
Book Description
This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz’ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy’s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.
Frontiers in Functional Equations and Analytic Inequalities
Author: George A. Anastassiou
Publisher: Springer Nature
ISBN: 3030289508
Category : Mathematics
Languages : en
Pages : 746
Book Description
This volume presents cutting edge research from the frontiers of functional equations and analytic inequalities active fields. It covers the subject of functional equations in a broad sense, including but not limited to the following topics: Hyperstability of a linear functional equation on restricted domains Hyers–Ulam’s stability results to a three point boundary value problem of nonlinear fractional order differential equations Topological degree theory and Ulam’s stability analysis of a boundary value problem of fractional differential equations General Solution and Hyers-Ulam Stability of Duo Trigintic Functional Equation in Multi-Banach Spaces Stabilities of Functional Equations via Fixed Point Technique Measure zero stability problem for the Drygas functional equation with complex involution Fourier Transforms and Ulam Stabilities of Linear Differential Equations Hyers–Ulam stability of a discrete diamond–alpha derivative equation Approximate solutions of an interesting new mixed type additive-quadratic-quartic functional equation. The diverse selection of inequalities covered includes Opial, Hilbert-Pachpatte, Ostrowski, comparison of means, Poincare, Sobolev, Landau, Polya-Ostrowski, Hardy, Hermite-Hadamard, Levinson, and complex Korovkin type. The inequalities are also in the environments of Fractional Calculus and Conformable Fractional Calculus. Applications from this book's results can be found in many areas of pure and applied mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such, this volume is suitable for researchers, graduate students and related seminars, and all science and engineering libraries. The exhibited thirty six chapters are self-contained and can be read independently and interesting advanced seminars can be given out of this book.
Publisher: Springer Nature
ISBN: 3030289508
Category : Mathematics
Languages : en
Pages : 746
Book Description
This volume presents cutting edge research from the frontiers of functional equations and analytic inequalities active fields. It covers the subject of functional equations in a broad sense, including but not limited to the following topics: Hyperstability of a linear functional equation on restricted domains Hyers–Ulam’s stability results to a three point boundary value problem of nonlinear fractional order differential equations Topological degree theory and Ulam’s stability analysis of a boundary value problem of fractional differential equations General Solution and Hyers-Ulam Stability of Duo Trigintic Functional Equation in Multi-Banach Spaces Stabilities of Functional Equations via Fixed Point Technique Measure zero stability problem for the Drygas functional equation with complex involution Fourier Transforms and Ulam Stabilities of Linear Differential Equations Hyers–Ulam stability of a discrete diamond–alpha derivative equation Approximate solutions of an interesting new mixed type additive-quadratic-quartic functional equation. The diverse selection of inequalities covered includes Opial, Hilbert-Pachpatte, Ostrowski, comparison of means, Poincare, Sobolev, Landau, Polya-Ostrowski, Hardy, Hermite-Hadamard, Levinson, and complex Korovkin type. The inequalities are also in the environments of Fractional Calculus and Conformable Fractional Calculus. Applications from this book's results can be found in many areas of pure and applied mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such, this volume is suitable for researchers, graduate students and related seminars, and all science and engineering libraries. The exhibited thirty six chapters are self-contained and can be read independently and interesting advanced seminars can be given out of this book.
The Hardy Inequality
Author: Alois Kufner
Publisher:
ISBN: 9788086843155
Category :
Languages : en
Pages : 161
Book Description
Publisher:
ISBN: 9788086843155
Category :
Languages : en
Pages : 161
Book Description
Inequalities
Author: G. H. Hardy
Publisher: Cambridge University Press
ISBN: 9780521358804
Category : Mathematics
Languages : en
Pages : 344
Book Description
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
Publisher: Cambridge University Press
ISBN: 9780521358804
Category : Mathematics
Languages : en
Pages : 344
Book Description
This classic of the mathematical literature forms a comprehensive study of the inequalities used throughout mathematics. First published in 1934, it presents clearly and lucidly both the statement and proof of all the standard inequalities of analysis. The authors were well-known for their powers of exposition and made this subject accessible to a wide audience of mathematicians.
On Hilbert-Type and Hardy-Type Integral Inequalities and Applications
Author: Bicheng Yang
Publisher: Springer
ISBN: 9783030292676
Category : Mathematics
Languages : en
Pages : 145
Book Description
This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.
Publisher: Springer
ISBN: 9783030292676
Category : Mathematics
Languages : en
Pages : 145
Book Description
This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.
Hardy Type Inequalities on Time Scales
Author: Ravi P. Agarwal
Publisher: Springer
ISBN: 3319442996
Category : Mathematics
Languages : en
Pages : 309
Book Description
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors’ knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.
Publisher: Springer
ISBN: 3319442996
Category : Mathematics
Languages : en
Pages : 309
Book Description
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors’ knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.
Functional Inequalities: New Perspectives and New Applications
Author: Nassif Ghoussoub
Publisher: American Mathematical Soc.
ISBN: 0821891529
Category : Mathematics
Languages : en
Pages : 331
Book Description
"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.
Publisher: American Mathematical Soc.
ISBN: 0821891529
Category : Mathematics
Languages : en
Pages : 331
Book Description
"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.