Author: Maurice Heins
Publisher: Springer
ISBN: 3540361391
Category : Mathematics
Languages : en
Pages : 113
Book Description
Hardy Classes on Riemann Surfaces
Author: Maurice Heins
Publisher: Springer
ISBN: 3540361391
Category : Mathematics
Languages : en
Pages : 113
Book Description
Publisher: Springer
ISBN: 3540361391
Category : Mathematics
Languages : en
Pages : 113
Book Description
Hardy Classes on Infinitely Connected Riemann Surfaces
Author: M. Hasumi
Publisher: Springer
ISBN: 3540387196
Category : Mathematics
Languages : en
Pages : 292
Book Description
Publisher: Springer
ISBN: 3540387196
Category : Mathematics
Languages : en
Pages : 292
Book Description
Hardy Classes on Riemann Surfaces
Author: Maurice Heins
Publisher:
ISBN: 9783662169452
Category :
Languages : en
Pages : 116
Book Description
Publisher:
ISBN: 9783662169452
Category :
Languages : en
Pages : 116
Book Description
Invariant Subspaces of Hardy Classes on Infinitely Connected Open Surfaces
Author: Charles W. Neville
Publisher: American Mathematical Soc.
ISBN: 0821818600
Category : Mathematics
Languages : en
Pages : 164
Book Description
We generalize Beurling's theorem on the shift invariant subspaces of Hardy class H[superscript]2 of the unit disk to the Hardy classes of admissible Riemann surfaces. Essentially, an open Riemann surface is admissible if it admits enough bounded multiple valued analytic functions. The class of admissible surfaces contains many infinitely connected surfaces, and all finite surfaces, but does not contain all plane regions admitting sufficiently many bounded analytic functions to sseparatepoints. We generalize the ttheorem of A.H. Read and the Cauchy integral formula to the boundary values, on the Hayashi boundary, of functions in the Hardy classes of admissible surfaces.
Publisher: American Mathematical Soc.
ISBN: 0821818600
Category : Mathematics
Languages : en
Pages : 164
Book Description
We generalize Beurling's theorem on the shift invariant subspaces of Hardy class H[superscript]2 of the unit disk to the Hardy classes of admissible Riemann surfaces. Essentially, an open Riemann surface is admissible if it admits enough bounded multiple valued analytic functions. The class of admissible surfaces contains many infinitely connected surfaces, and all finite surfaces, but does not contain all plane regions admitting sufficiently many bounded analytic functions to sseparatepoints. We generalize the ttheorem of A.H. Read and the Cauchy integral formula to the boundary values, on the Hayashi boundary, of functions in the Hardy classes of admissible surfaces.
Hardy Classes on Infinitely Connected Riemann Surfaces
Author: Morisuke Hasumi
Publisher: Springer
ISBN: 9780387127293
Category : Hardy classes
Languages : en
Pages : 280
Book Description
Publisher: Springer
ISBN: 9780387127293
Category : Hardy classes
Languages : en
Pages : 280
Book Description
Hardy Classes on Infinitely Connected Riemann Surfaces
Author: M. Hasumi
Publisher: Springer
ISBN: 9783662176023
Category : Mathematics
Languages : en
Pages : 282
Book Description
Publisher: Springer
ISBN: 9783662176023
Category : Mathematics
Languages : en
Pages : 282
Book Description
The Hardy Space of a Slit Domain
Author: Alexandru Aleman
Publisher: Springer Science & Business Media
ISBN: 3034600984
Category : Mathematics
Languages : en
Pages : 135
Book Description
If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .
Publisher: Springer Science & Business Media
ISBN: 3034600984
Category : Mathematics
Languages : en
Pages : 135
Book Description
If H is a Hilbert space and T : H ? H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M ? M? Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9401512353
Category : Mathematics
Languages : en
Pages : 549
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Publisher: Springer Science & Business Media
ISBN: 9401512353
Category : Mathematics
Languages : en
Pages : 549
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
The Theory of Subnormal Operators
Author: John B. Conway
Publisher: American Mathematical Soc.
ISBN: 0821815369
Category : Mathematics
Languages : en
Pages : 454
Book Description
"In a certain sense, subnormal operators were introduced too soon because the theory of function algebras and rational approximation was also in its infancy and could not be properly used to examine the class of operators. The progress in the last several years grew out of applying the results of rational approximation." from the Preface. This book is the successor to the author's 1981 book on the same subject. In addition to reflecting the great strides in the development of subnormal operator theory since the first book, the present work is oriented towards rational functions rather than polynomials. Although the book is a research monograph, it has many of the traits of a textbook including exercises. The book requires background in function theory and functional analysis, but is otherwise fairly self-contained. The first few chapters cover the basics about subnormal operator theory and present a study of analytic functions on the unit disk. Other topics included are: some results on hypernormal operators, an exposition of rational approximation interspersed with applications to operator theory, a study of weak-star rational approximation, a set of results that can be termed structure theorems for subnormal operators, and a proof that analytic bounded point evaluations exist.
Publisher: American Mathematical Soc.
ISBN: 0821815369
Category : Mathematics
Languages : en
Pages : 454
Book Description
"In a certain sense, subnormal operators were introduced too soon because the theory of function algebras and rational approximation was also in its infancy and could not be properly used to examine the class of operators. The progress in the last several years grew out of applying the results of rational approximation." from the Preface. This book is the successor to the author's 1981 book on the same subject. In addition to reflecting the great strides in the development of subnormal operator theory since the first book, the present work is oriented towards rational functions rather than polynomials. Although the book is a research monograph, it has many of the traits of a textbook including exercises. The book requires background in function theory and functional analysis, but is otherwise fairly self-contained. The first few chapters cover the basics about subnormal operator theory and present a study of analytic functions on the unit disk. Other topics included are: some results on hypernormal operators, an exposition of rational approximation interspersed with applications to operator theory, a study of weak-star rational approximation, a set of results that can be termed structure theorems for subnormal operators, and a proof that analytic bounded point evaluations exist.
Contributions to Operator Theory and its Applications
Author: I. Gohberg
Publisher: Birkhäuser
ISBN: 3034892845
Category : Science
Languages : en
Pages : 528
Book Description
Publisher: Birkhäuser
ISBN: 3034892845
Category : Science
Languages : en
Pages : 528
Book Description