Author: Ankur Roy
Publisher: Packt Publishing Ltd
ISBN: 1835081495
Category : Computers
Languages : en
Pages : 220
Book Description
Unleash DevOps excellence with Python and its ecosystem of tools for seamless orchestration on both local and cloud platforms, such as GCP, AWS, and Azure Key Features Integrate Python into DevOps for streamlined workflows, task automation, and improved collaboration Combine the principles of Python and DevOps into a unified approach for problem solving Learn about Python’s role in Infrastructure as Code (IaC), MLOps, networking, and other domains Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPython stands out as a powerhouse in DevOps, boasting unparalleled libraries and support, which makes it the preferred programming language for problem solvers worldwide. This book will help you understand the true flexibility of Python, demonstrating how it can be integrated into incredibly useful DevOps workflows and workloads, through practical examples. You'll start by understanding the symbiotic relation between Python and DevOps philosophies and then explore the applications of Python for provisioning and manipulating VMs and other cloud resources to facilitate DevOps activities. With illustrated examples, you’ll become familiar with automating DevOps tasks and learn where and how Python can be used to enhance CI/CD pipelines. Further, the book highlights Python’s role in the Infrastructure as Code (IaC) process development, including its connections with tools like Ansible, SaltStack, and Terraform. The concluding chapters cover advanced concepts such as MLOps, DataOps, and Python’s integration with generative AI, offering a glimpse into the areas of monitoring, logging, Kubernetes, and more. By the end of this book, you’ll know how to leverage Python in your DevOps-based workloads to make your life easier and save time.What you will learn Implement DevOps practices and principles using Python Enhance your DevOps workloads with Python Create Python-based DevOps solutions to improve your workload efficiency Understand DevOps objectives and the mindset needed to achieve them Use Python to automate DevOps tasks and increase productivity Explore the concepts of DevSecOps, MLOps, DataOps, and more Use Python for containerized workloads in Docker and Kubernetes Who this book is for This book is for IT professionals venturing into DevOps, particularly programmers seeking to apply their existing programming knowledge to excel in this field. For DevOps professionals without a coding background, this book serves as a resource to enhance their understanding of development practices and communicate more effectively with developers. Solutions architects, programmers, and anyone regularly working with DevOps solutions and Python will also benefit from this hands-on guide.
Hands-On Python for DevOps
Author: Ankur Roy
Publisher: Packt Publishing Ltd
ISBN: 1835081495
Category : Computers
Languages : en
Pages : 220
Book Description
Unleash DevOps excellence with Python and its ecosystem of tools for seamless orchestration on both local and cloud platforms, such as GCP, AWS, and Azure Key Features Integrate Python into DevOps for streamlined workflows, task automation, and improved collaboration Combine the principles of Python and DevOps into a unified approach for problem solving Learn about Python’s role in Infrastructure as Code (IaC), MLOps, networking, and other domains Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPython stands out as a powerhouse in DevOps, boasting unparalleled libraries and support, which makes it the preferred programming language for problem solvers worldwide. This book will help you understand the true flexibility of Python, demonstrating how it can be integrated into incredibly useful DevOps workflows and workloads, through practical examples. You'll start by understanding the symbiotic relation between Python and DevOps philosophies and then explore the applications of Python for provisioning and manipulating VMs and other cloud resources to facilitate DevOps activities. With illustrated examples, you’ll become familiar with automating DevOps tasks and learn where and how Python can be used to enhance CI/CD pipelines. Further, the book highlights Python’s role in the Infrastructure as Code (IaC) process development, including its connections with tools like Ansible, SaltStack, and Terraform. The concluding chapters cover advanced concepts such as MLOps, DataOps, and Python’s integration with generative AI, offering a glimpse into the areas of monitoring, logging, Kubernetes, and more. By the end of this book, you’ll know how to leverage Python in your DevOps-based workloads to make your life easier and save time.What you will learn Implement DevOps practices and principles using Python Enhance your DevOps workloads with Python Create Python-based DevOps solutions to improve your workload efficiency Understand DevOps objectives and the mindset needed to achieve them Use Python to automate DevOps tasks and increase productivity Explore the concepts of DevSecOps, MLOps, DataOps, and more Use Python for containerized workloads in Docker and Kubernetes Who this book is for This book is for IT professionals venturing into DevOps, particularly programmers seeking to apply their existing programming knowledge to excel in this field. For DevOps professionals without a coding background, this book serves as a resource to enhance their understanding of development practices and communicate more effectively with developers. Solutions architects, programmers, and anyone regularly working with DevOps solutions and Python will also benefit from this hands-on guide.
Publisher: Packt Publishing Ltd
ISBN: 1835081495
Category : Computers
Languages : en
Pages : 220
Book Description
Unleash DevOps excellence with Python and its ecosystem of tools for seamless orchestration on both local and cloud platforms, such as GCP, AWS, and Azure Key Features Integrate Python into DevOps for streamlined workflows, task automation, and improved collaboration Combine the principles of Python and DevOps into a unified approach for problem solving Learn about Python’s role in Infrastructure as Code (IaC), MLOps, networking, and other domains Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPython stands out as a powerhouse in DevOps, boasting unparalleled libraries and support, which makes it the preferred programming language for problem solvers worldwide. This book will help you understand the true flexibility of Python, demonstrating how it can be integrated into incredibly useful DevOps workflows and workloads, through practical examples. You'll start by understanding the symbiotic relation between Python and DevOps philosophies and then explore the applications of Python for provisioning and manipulating VMs and other cloud resources to facilitate DevOps activities. With illustrated examples, you’ll become familiar with automating DevOps tasks and learn where and how Python can be used to enhance CI/CD pipelines. Further, the book highlights Python’s role in the Infrastructure as Code (IaC) process development, including its connections with tools like Ansible, SaltStack, and Terraform. The concluding chapters cover advanced concepts such as MLOps, DataOps, and Python’s integration with generative AI, offering a glimpse into the areas of monitoring, logging, Kubernetes, and more. By the end of this book, you’ll know how to leverage Python in your DevOps-based workloads to make your life easier and save time.What you will learn Implement DevOps practices and principles using Python Enhance your DevOps workloads with Python Create Python-based DevOps solutions to improve your workload efficiency Understand DevOps objectives and the mindset needed to achieve them Use Python to automate DevOps tasks and increase productivity Explore the concepts of DevSecOps, MLOps, DataOps, and more Use Python for containerized workloads in Docker and Kubernetes Who this book is for This book is for IT professionals venturing into DevOps, particularly programmers seeking to apply their existing programming knowledge to excel in this field. For DevOps professionals without a coding background, this book serves as a resource to enhance their understanding of development practices and communicate more effectively with developers. Solutions architects, programmers, and anyone regularly working with DevOps solutions and Python will also benefit from this hands-on guide.
Python for DevOps
Author: Noah Gift
Publisher: O'Reilly Media
ISBN: 1492057665
Category : Computers
Languages : en
Pages : 506
Book Description
Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to "get stuff done" in Python? This is your guide. Python foundations, including a brief introduction to the language How to automate text, write command-line tools, and automate the filesystem Linux utilities, package management, build systems, monitoring and instrumentation, and automated testing Cloud computing, infrastructure as code, Kubernetes, and serverless Machine learning operations and data engineering from a DevOps perspective Building, deploying, and operationalizing a machine learning project
Publisher: O'Reilly Media
ISBN: 1492057665
Category : Computers
Languages : en
Pages : 506
Book Description
Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today’s most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you’ll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to "get stuff done" in Python? This is your guide. Python foundations, including a brief introduction to the language How to automate text, write command-line tools, and automate the filesystem Linux utilities, package management, build systems, monitoring and instrumentation, and automated testing Cloud computing, infrastructure as code, Kubernetes, and serverless Machine learning operations and data engineering from a DevOps perspective Building, deploying, and operationalizing a machine learning project
Hands-On Enterprise Automation with Python
Author: Bassem Aly
Publisher: Packt Publishing Ltd
ISBN: 1788992644
Category : Computers
Languages : en
Pages : 383
Book Description
Invent your own Python scripts to automate your infrastructure Key Features Make the most of Python libraries and modules to automate your infrastructure Leverage Python programming to automate server configurations and administration tasks Efficiently develop your Python skill set Book Description Hands-On Enterprise Automation with Python starts by covering the set up of a Python environment to perform automation tasks, as well as the modules, libraries, and tools you will be using. We’ll explore examples of network automation tasks using simple Python programs and Ansible. Next, we will walk you through automating administration tasks with Python Fabric, where you will learn to perform server configuration and administration, along with system administration tasks such as user management, database management, and process management. As you progress through this book, you’ll automate several testing services with Python scripts and perform automation tasks on virtual machines and cloud infrastructure with Python. In the concluding chapters, you will cover Python-based offensive security tools and learn how to automate your security tasks. By the end of this book, you will have mastered the skills of automating several system administration tasks with Python. What you will learn Understand common automation modules used in Python Develop Python scripts to manage network devices Automate common Linux administration tasks with Ansible and Fabric Managing Linux processes Administrate VMware, OpenStack, and AWS instances with Python Security automation and sharing code on GitHub Who this book is for Hands-On Enterprise Automation with Python is for system administrators and DevOps engineers who are looking for an alternative to major automation frameworks such as Puppet and Chef. Basic programming knowledge with Python and Linux shell scripting is necessary.
Publisher: Packt Publishing Ltd
ISBN: 1788992644
Category : Computers
Languages : en
Pages : 383
Book Description
Invent your own Python scripts to automate your infrastructure Key Features Make the most of Python libraries and modules to automate your infrastructure Leverage Python programming to automate server configurations and administration tasks Efficiently develop your Python skill set Book Description Hands-On Enterprise Automation with Python starts by covering the set up of a Python environment to perform automation tasks, as well as the modules, libraries, and tools you will be using. We’ll explore examples of network automation tasks using simple Python programs and Ansible. Next, we will walk you through automating administration tasks with Python Fabric, where you will learn to perform server configuration and administration, along with system administration tasks such as user management, database management, and process management. As you progress through this book, you’ll automate several testing services with Python scripts and perform automation tasks on virtual machines and cloud infrastructure with Python. In the concluding chapters, you will cover Python-based offensive security tools and learn how to automate your security tasks. By the end of this book, you will have mastered the skills of automating several system administration tasks with Python. What you will learn Understand common automation modules used in Python Develop Python scripts to manage network devices Automate common Linux administration tasks with Ansible and Fabric Managing Linux processes Administrate VMware, OpenStack, and AWS instances with Python Security automation and sharing code on GitHub Who this book is for Hands-On Enterprise Automation with Python is for system administrators and DevOps engineers who are looking for an alternative to major automation frameworks such as Puppet and Chef. Basic programming knowledge with Python and Linux shell scripting is necessary.
Hands-on DevOps with Linux
Author: Alisson Machado de Menezes
Publisher: BPB Publications
ISBN: 9389423481
Category : Computers
Languages : en
Pages : 248
Book Description
Manage Linux Servers on-premises and cloud with advanced DevOps techniques using Kubernetes Ê KEY FEATURESÊÊ _ Detailed coverage on architecture of Web Servers, Databases, and Cloud Servers. _ Practical touch on deploying your application and managing cloud infrastructure using Docker and Terraform. _ Simplified implementation of Infrastructure as Code with Vagrant. _ Explore the use of different cloud services for better provisioning, scalability, and reliability of enterprise applications. DESCRIPTIONÊ Hands-on DevOps with Linux brings you advanced learnings on how to make the best use of Linux commands in managing the DevOps infrastructure to keep enterprise applications up-to-date. The book begins by introducing you to the Linux world with the most used commands by DevOps experts and teaches how to set up your own infrastructure in your environment. The book covers exclusive coverage on production scenarios using Kubernetes and how the entire container orchestration is managed.Ê Throughout the book, you will get accustomed to the most widely used techniques among DevOps Engineers in their routine.Ê You will explore how infrastructure as code works, working with Vagrant, Docker and Terraform through which you can manage the entire cloud deployment of applications along with how to scale them on your own. WHAT YOU WILL LEARN _ Create Infrastructure as Code to replicate the configuration to your infrastructure. _ Learn best methods and techniques to build continuous delivery pipeline using Jenkins. _ Learn to Distribute and scale your applications using Kubernetes. _ Get insights by analyzing millions of server logs using Kibana and Logstash. WHO THIS BOOK IS FORÊÊ This book is best suited for DevOps Engineers and DevOps professionals who want to make best use of Linux commands in managing the DevOps infrastructure daily. It is a good handy guide for Linux administrators and system administrators too to get familiar with the use of Linux in Devops and advance their skillset in DevOps. Ê TABLE OF CONTENTS 1. Getting started with Linux 2. Working with Bash 3. Setting up a service 4. Configuring a reverse proxy with Nginx 5. Deploying your application using Docker 6. Automating your Infrastructure as Code 7. Creating your infrastructure using cloud services 8. Working with Terraform 9. Working with Git 10. Continuous integration and Continuous Delivery using Jenkins 11. Deploying and scaling your application using Kubernetes 12. Logs with open source Tools
Publisher: BPB Publications
ISBN: 9389423481
Category : Computers
Languages : en
Pages : 248
Book Description
Manage Linux Servers on-premises and cloud with advanced DevOps techniques using Kubernetes Ê KEY FEATURESÊÊ _ Detailed coverage on architecture of Web Servers, Databases, and Cloud Servers. _ Practical touch on deploying your application and managing cloud infrastructure using Docker and Terraform. _ Simplified implementation of Infrastructure as Code with Vagrant. _ Explore the use of different cloud services for better provisioning, scalability, and reliability of enterprise applications. DESCRIPTIONÊ Hands-on DevOps with Linux brings you advanced learnings on how to make the best use of Linux commands in managing the DevOps infrastructure to keep enterprise applications up-to-date. The book begins by introducing you to the Linux world with the most used commands by DevOps experts and teaches how to set up your own infrastructure in your environment. The book covers exclusive coverage on production scenarios using Kubernetes and how the entire container orchestration is managed.Ê Throughout the book, you will get accustomed to the most widely used techniques among DevOps Engineers in their routine.Ê You will explore how infrastructure as code works, working with Vagrant, Docker and Terraform through which you can manage the entire cloud deployment of applications along with how to scale them on your own. WHAT YOU WILL LEARN _ Create Infrastructure as Code to replicate the configuration to your infrastructure. _ Learn best methods and techniques to build continuous delivery pipeline using Jenkins. _ Learn to Distribute and scale your applications using Kubernetes. _ Get insights by analyzing millions of server logs using Kibana and Logstash. WHO THIS BOOK IS FORÊÊ This book is best suited for DevOps Engineers and DevOps professionals who want to make best use of Linux commands in managing the DevOps infrastructure daily. It is a good handy guide for Linux administrators and system administrators too to get familiar with the use of Linux in Devops and advance their skillset in DevOps. Ê TABLE OF CONTENTS 1. Getting started with Linux 2. Working with Bash 3. Setting up a service 4. Configuring a reverse proxy with Nginx 5. Deploying your application using Docker 6. Automating your Infrastructure as Code 7. Creating your infrastructure using cloud services 8. Working with Terraform 9. Working with Git 10. Continuous integration and Continuous Delivery using Jenkins 11. Deploying and scaling your application using Kubernetes 12. Logs with open source Tools
Python for Geeks
Author: Muhammad Asif
Publisher: Packt Publishing Ltd
ISBN: 180107335X
Category : Computers
Languages : en
Pages : 546
Book Description
Take your Python skills to the next level to develop scalable, real-world applications for local as well as cloud deployment Key FeaturesAll code examples have been tested with Python 3.7 and Python 3.8 and are expected to work with any future 3.x releaseLearn how to build modular and object-oriented applications in PythonDiscover how to use advanced Python techniques for the cloud and clustersBook Description Python is a multipurpose language that can be used for multiple use cases. Python for Geeks will teach you how to advance in your career with the help of expert tips and tricks. You'll start by exploring the different ways of using Python optimally, both from the design and implementation point of view. Next, you'll understand the life cycle of a large-scale Python project. As you advance, you'll focus on different ways of creating an elegant design by modularizing a Python project and learn best practices and design patterns for using Python. You'll also discover how to scale out Python beyond a single thread and how to implement multiprocessing and multithreading in Python. In addition to this, you'll understand how you can not only use Python to deploy on a single machine but also use clusters in private as well as in public cloud computing environments. You'll then explore data processing techniques, focus on reusable, scalable data pipelines, and learn how to use these advanced techniques for network automation, serverless functions, and machine learning. Finally, you'll focus on strategizing web development design using the techniques and best practices covered in the book. By the end of this Python book, you'll be able to do some serious Python programming for large-scale complex projects. What you will learnUnderstand how to design and manage complex Python projectsStrategize test-driven development (TDD) in PythonExplore multithreading and multiprogramming in PythonUse Python for data processing with Apache Spark and Google Cloud Platform (GCP)Deploy serverless programs on public clouds such as GCPUse Python to build web applications and application programming interfacesApply Python for network automation and serverless functionsGet to grips with Python for data analysis and machine learningWho this book is for This book is for intermediate-level Python developers in any field who are looking to build their skills to develop and manage large-scale complex projects. Developers who want to create reusable modules and Python libraries and cloud developers building applications for cloud deployment will also find this book useful. Prior experience with Python will help you get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 180107335X
Category : Computers
Languages : en
Pages : 546
Book Description
Take your Python skills to the next level to develop scalable, real-world applications for local as well as cloud deployment Key FeaturesAll code examples have been tested with Python 3.7 and Python 3.8 and are expected to work with any future 3.x releaseLearn how to build modular and object-oriented applications in PythonDiscover how to use advanced Python techniques for the cloud and clustersBook Description Python is a multipurpose language that can be used for multiple use cases. Python for Geeks will teach you how to advance in your career with the help of expert tips and tricks. You'll start by exploring the different ways of using Python optimally, both from the design and implementation point of view. Next, you'll understand the life cycle of a large-scale Python project. As you advance, you'll focus on different ways of creating an elegant design by modularizing a Python project and learn best practices and design patterns for using Python. You'll also discover how to scale out Python beyond a single thread and how to implement multiprocessing and multithreading in Python. In addition to this, you'll understand how you can not only use Python to deploy on a single machine but also use clusters in private as well as in public cloud computing environments. You'll then explore data processing techniques, focus on reusable, scalable data pipelines, and learn how to use these advanced techniques for network automation, serverless functions, and machine learning. Finally, you'll focus on strategizing web development design using the techniques and best practices covered in the book. By the end of this Python book, you'll be able to do some serious Python programming for large-scale complex projects. What you will learnUnderstand how to design and manage complex Python projectsStrategize test-driven development (TDD) in PythonExplore multithreading and multiprogramming in PythonUse Python for data processing with Apache Spark and Google Cloud Platform (GCP)Deploy serverless programs on public clouds such as GCPUse Python to build web applications and application programming interfacesApply Python for network automation and serverless functionsGet to grips with Python for data analysis and machine learningWho this book is for This book is for intermediate-level Python developers in any field who are looking to build their skills to develop and manage large-scale complex projects. Developers who want to create reusable modules and Python libraries and cloud developers building applications for cloud deployment will also find this book useful. Prior experience with Python will help you get the most out of this book.
The DevOps Handbook
Author: Gene Kim
Publisher: IT Revolution
ISBN: 194278807X
Category : Business & Economics
Languages : en
Pages : 467
Book Description
Increase profitability, elevate work culture, and exceed productivity goals through DevOps practices. More than ever, the effective management of technology is critical for business competitiveness. For decades, technology leaders have struggled to balance agility, reliability, and security. The consequences of failure have never been greater―whether it's the healthcare.gov debacle, cardholder data breaches, or missing the boat with Big Data in the cloud. And yet, high performers using DevOps principles, such as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying code into production hundreds, or even thousands, of times per day. Following in the footsteps of The Phoenix Project, The DevOps Handbook shows leaders how to replicate these incredible outcomes, by showing how to integrate Product Management, Development, QA, IT Operations, and Information Security to elevate your company and win in the marketplace.
Publisher: IT Revolution
ISBN: 194278807X
Category : Business & Economics
Languages : en
Pages : 467
Book Description
Increase profitability, elevate work culture, and exceed productivity goals through DevOps practices. More than ever, the effective management of technology is critical for business competitiveness. For decades, technology leaders have struggled to balance agility, reliability, and security. The consequences of failure have never been greater―whether it's the healthcare.gov debacle, cardholder data breaches, or missing the boat with Big Data in the cloud. And yet, high performers using DevOps principles, such as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying code into production hundreds, or even thousands, of times per day. Following in the footsteps of The Phoenix Project, The DevOps Handbook shows leaders how to replicate these incredible outcomes, by showing how to integrate Product Management, Development, QA, IT Operations, and Information Security to elevate your company and win in the marketplace.
Hands-On Software Engineering with Python
Author: Brian Allbee
Publisher: Packt Publishing Ltd
ISBN: 1788621352
Category : Computers
Languages : en
Pages : 723
Book Description
Explore various verticals in software engineering through high-end systems using Python Key FeaturesMaster the tools and techniques used in software engineeringEvaluates available database options and selects one for the final Central Office system-componentsExperience the iterations software go through and craft enterprise-grade systemsBook Description Software Engineering is about more than just writing code—it includes a host of soft skills that apply to almost any development effort, no matter what the language, development methodology, or scope of the project. Being a senior developer all but requires awareness of how those skills, along with their expected technical counterparts, mesh together through a project's life cycle. This book walks you through that discovery by going over the entire life cycle of a multi-tier system and its related software projects. You'll see what happens before any development takes place, and what impact the decisions and designs made at each step have on the development process. The development of the entire project, over the course of several iterations based on real-world Agile iterations, will be executed, sometimes starting from nothing, in one of the fastest growing languages in the world—Python. Application of practices in Python will be laid out, along with a number of Python-specific capabilities that are often overlooked. Finally, the book will implement a high-performance computing solution, from first principles through complete foundation. What you will learnUnderstand what happens over the course of a system's life (SDLC)Establish what to expect from the pre-development life cycle stepsFind out how the development-specific phases of the SDLC affect developmentUncover what a real-world development process might be like, in an Agile wayFind out how to do more than just write the codeIdentify the existence of project-independent best practices and how to use themFind out how to design and implement a high-performance computing processWho this book is for Hands-On Software Engineering with Python is for you if you are a developer having basic understanding of programming and its paradigms and want to skill up as a senior programmer. It is assumed that you have basic Python knowledge.
Publisher: Packt Publishing Ltd
ISBN: 1788621352
Category : Computers
Languages : en
Pages : 723
Book Description
Explore various verticals in software engineering through high-end systems using Python Key FeaturesMaster the tools and techniques used in software engineeringEvaluates available database options and selects one for the final Central Office system-componentsExperience the iterations software go through and craft enterprise-grade systemsBook Description Software Engineering is about more than just writing code—it includes a host of soft skills that apply to almost any development effort, no matter what the language, development methodology, or scope of the project. Being a senior developer all but requires awareness of how those skills, along with their expected technical counterparts, mesh together through a project's life cycle. This book walks you through that discovery by going over the entire life cycle of a multi-tier system and its related software projects. You'll see what happens before any development takes place, and what impact the decisions and designs made at each step have on the development process. The development of the entire project, over the course of several iterations based on real-world Agile iterations, will be executed, sometimes starting from nothing, in one of the fastest growing languages in the world—Python. Application of practices in Python will be laid out, along with a number of Python-specific capabilities that are often overlooked. Finally, the book will implement a high-performance computing solution, from first principles through complete foundation. What you will learnUnderstand what happens over the course of a system's life (SDLC)Establish what to expect from the pre-development life cycle stepsFind out how the development-specific phases of the SDLC affect developmentUncover what a real-world development process might be like, in an Agile wayFind out how to do more than just write the codeIdentify the existence of project-independent best practices and how to use themFind out how to design and implement a high-performance computing processWho this book is for Hands-On Software Engineering with Python is for you if you are a developer having basic understanding of programming and its paradigms and want to skill up as a senior programmer. It is assumed that you have basic Python knowledge.
Hands-On Data Science and Python Machine Learning
Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787280225
Category : Computers
Languages : en
Pages : 415
Book Description
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Publisher: Packt Publishing Ltd
ISBN: 1787280225
Category : Computers
Languages : en
Pages : 415
Book Description
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Test-Driven Python Development
Author: Siddharta Govindaraj
Publisher: Packt Publishing Ltd
ISBN: 1783987936
Category : Computers
Languages : en
Pages : 264
Book Description
This book is intended for Python developers who want to use the principles of test-driven development (TDD) to create efficient and robust applications. In order to get the best out of this book, you should have development experience with Python.
Publisher: Packt Publishing Ltd
ISBN: 1783987936
Category : Computers
Languages : en
Pages : 264
Book Description
This book is intended for Python developers who want to use the principles of test-driven development (TDD) to create efficient and robust applications. In order to get the best out of this book, you should have development experience with Python.
Hands-On Transfer Learning with Python
Author: Dipanjan Sarkar
Publisher: Packt Publishing Ltd
ISBN: 1788839056
Category : Computers
Languages : en
Pages : 430
Book Description
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.
Publisher: Packt Publishing Ltd
ISBN: 1788839056
Category : Computers
Languages : en
Pages : 430
Book Description
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.