Hands-On Predictive Analytics with Python

Hands-On Predictive Analytics with Python PDF Author: Alvaro Fuentes
Publisher: Packt Publishing Ltd
ISBN: 1789134544
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
Step-by-step guide to build high performing predictive applications Key FeaturesUse the Python data analytics ecosystem to implement end-to-end predictive analytics projectsExplore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanationsLearn to deploy a predictive model's results as an interactive applicationBook Description Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages. The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model. Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics. By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming. What you will learnGet to grips with the main concepts and principles of predictive analyticsLearn about the stages involved in producing complete predictive analytics solutionsUnderstand how to define a problem, propose a solution, and prepare a datasetUse visualizations to explore relationships and gain insights into the datasetLearn to build regression and classification models using scikit-learnUse Keras to build powerful neural network models that produce accurate predictionsLearn to serve a model's predictions as a web applicationWho this book is for This book is for data analysts, data scientists, data engineers, and Python developers who want to learn about predictive modeling and would like to implement predictive analytics solutions using Python's data stack. People from other backgrounds who would like to enter this exciting field will greatly benefit from reading this book. All you need is to be proficient in Python programming and have a basic understanding of statistics and college-level algebra.

Hands-On Predictive Analytics with Python

Hands-On Predictive Analytics with Python PDF Author: Alvaro Fuentes
Publisher: Packt Publishing Ltd
ISBN: 1789134544
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
Step-by-step guide to build high performing predictive applications Key FeaturesUse the Python data analytics ecosystem to implement end-to-end predictive analytics projectsExplore advanced predictive modeling algorithms with an emphasis on theory with intuitive explanationsLearn to deploy a predictive model's results as an interactive applicationBook Description Predictive analytics is an applied field that employs a variety of quantitative methods using data to make predictions. It involves much more than just throwing data onto a computer to build a model. This book provides practical coverage to help you understand the most important concepts of predictive analytics. Using practical, step-by-step examples, we build predictive analytics solutions while using cutting-edge Python tools and packages. The book's step-by-step approach starts by defining the problem and moves on to identifying relevant data. We will also be performing data preparation, exploring and visualizing relationships, building models, tuning, evaluating, and deploying model. Each stage has relevant practical examples and efficient Python code. You will work with models such as KNN, Random Forests, and neural networks using the most important libraries in Python's data science stack: NumPy, Pandas, Matplotlib, Seaborn, Keras, Dash, and so on. In addition to hands-on code examples, you will find intuitive explanations of the inner workings of the main techniques and algorithms used in predictive analytics. By the end of this book, you will be all set to build high-performance predictive analytics solutions using Python programming. What you will learnGet to grips with the main concepts and principles of predictive analyticsLearn about the stages involved in producing complete predictive analytics solutionsUnderstand how to define a problem, propose a solution, and prepare a datasetUse visualizations to explore relationships and gain insights into the datasetLearn to build regression and classification models using scikit-learnUse Keras to build powerful neural network models that produce accurate predictionsLearn to serve a model's predictions as a web applicationWho this book is for This book is for data analysts, data scientists, data engineers, and Python developers who want to learn about predictive modeling and would like to implement predictive analytics solutions using Python's data stack. People from other backgrounds who would like to enter this exciting field will greatly benefit from reading this book. All you need is to be proficient in Python programming and have a basic understanding of statistics and college-level algebra.

Learning Predictive Analytics with Python

Learning Predictive Analytics with Python PDF Author: Ashish Kumar
Publisher: Packt Publishing Ltd
ISBN: 1783983272
Category : Computers
Languages : en
Pages : 354

Get Book Here

Book Description
Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python About This Book A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices Get to grips with the basics of Predictive Analytics with Python Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering Who This Book Is For If you wish to learn how to implement Predictive Analytics algorithms using Python libraries, then this is the book for you. If you are familiar with coding in Python (or some other programming/statistical/scripting language) but have never used or read about Predictive Analytics algorithms, this book will also help you. The book will be beneficial to and can be read by any Data Science enthusiasts. Some familiarity with Python will be useful to get the most out of this book, but it is certainly not a prerequisite. What You Will Learn Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries Analyze the result parameters arising from the implementation of Predictive Analytics algorithms Write Python modules/functions from scratch to execute segments or the whole of these algorithms Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries Understand the best practices while handling datasets in Python and creating predictive models out of them In Detail Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age. This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy. You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. Style and approach All the concepts in this book been explained and illustrated using a dataset, and in a step-by-step manner. The Python code snippet to implement a method or concept is followed by the output, such as charts, dataset heads, pictures, and so on. The statistical concepts are explained in detail wherever required.

Hands-On Data Preprocessing in Python

Hands-On Data Preprocessing in Python PDF Author: Roy Jafari
Publisher: Packt Publishing Ltd
ISBN: 1801079951
Category : Computers
Languages : en
Pages : 602

Get Book Here

Book Description
Get your raw data cleaned up and ready for processing to design better data analytic solutions Key FeaturesDevelop the skills to perform data cleaning, data integration, data reduction, and data transformationMake the most of your raw data with powerful data transformation and massaging techniquesPerform thorough data cleaning, including dealing with missing values and outliersBook Description Hands-On Data Preprocessing is a primer on the best data cleaning and preprocessing techniques, written by an expert who's developed college-level courses on data preprocessing and related subjects. With this book, you'll be equipped with the optimum data preprocessing techniques from multiple perspectives, ensuring that you get the best possible insights from your data. You'll learn about different technical and analytical aspects of data preprocessing – data collection, data cleaning, data integration, data reduction, and data transformation – and get to grips with implementing them using the open source Python programming environment. The hands-on examples and easy-to-follow chapters will help you gain a comprehensive articulation of data preprocessing, its whys and hows, and identify opportunities where data analytics could lead to more effective decision making. As you progress through the chapters, you'll also understand the role of data management systems and technologies for effective analytics and how to use APIs to pull data. By the end of this Python data preprocessing book, you'll be able to use Python to read, manipulate, and analyze data; perform data cleaning, integration, reduction, and transformation techniques, and handle outliers or missing values to effectively prepare data for analytic tools. What you will learnUse Python to perform analytics functions on your dataUnderstand the role of databases and how to effectively pull data from databasesPerform data preprocessing steps defined by your analytics goalsRecognize and resolve data integration challengesIdentify the need for data reduction and execute itDetect opportunities to improve analytics with data transformationWho this book is for This book is for junior and senior data analysts, business intelligence professionals, engineering undergraduates, and data enthusiasts looking to perform preprocessing and data cleaning on large amounts of data. You don't need any prior experience with data preprocessing to get started with this book. However, basic programming skills, such as working with variables, conditionals, and loops, along with beginner-level knowledge of Python and simple analytics experience, are a prerequisite.

Hands-On Q-Learning with Python

Hands-On Q-Learning with Python PDF Author: Nazia Habib
Publisher: Packt Publishing Ltd
ISBN: 1789345758
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
Leverage the power of reward-based training for your deep learning models with Python Key FeaturesUnderstand Q-learning algorithms to train neural networks using Markov Decision Process (MDP)Study practical deep reinforcement learning using Q-NetworksExplore state-based unsupervised learning for machine learning modelsBook Description Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you get familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into modelfree Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in real-world applications such as scientific research. Toward the end, you’ll gain a sense of what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow. What you will learnExplore the fundamentals of reinforcement learning and the state-action-reward processUnderstand Markov decision processesGet well versed with libraries such as Keras, and TensorFlowCreate and deploy model-free learning and deep Q-learning agents with TensorFlow, Keras, and OpenAI GymChoose and optimize a Q-Network’s learning parameters and fine-tune its performanceDiscover real-world applications and use cases of Q-learningWho this book is for If you are a machine learning developer, engineer, or professional who wants to delve into the deep learning approach for a complex environment, then this is the book for you. Proficiency in Python programming and basic understanding of decision-making in reinforcement learning is assumed.

Marketing Data Science

Marketing Data Science PDF Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887340
Category : Business & Economics
Languages : en
Pages : 812

Get Book Here

Book Description
Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

Machine Learning in Python

Machine Learning in Python PDF Author: Michael Bowles
Publisher: John Wiley & Sons
ISBN: 1118961749
Category : Computers
Languages : en
Pages : 361

Get Book Here

Book Description
Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. Predict outcomes using linear and ensemble algorithm families Build predictive models that solve a range of simple and complex problems Apply core machine learning algorithms using Python Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.

Hands-On Automated Machine Learning

Hands-On Automated Machine Learning PDF Author: Sibanjan Das
Publisher: Packt Publishing Ltd
ISBN: 1788622286
Category : Computers
Languages : en
Pages : 273

Get Book Here

Book Description
Automate data and model pipelines for faster machine learning applications Key Features Build automated modules for different machine learning components Understand each component of a machine learning pipeline in depth Learn to use different open source AutoML and feature engineering platforms Book Description AutoML is designed to automate parts of Machine Learning. Readily available AutoML tools are making data science practitioners’ work easy and are received well in the advanced analytics community. Automated Machine Learning covers the necessary foundation needed to create automated machine learning modules and helps you get up to speed with them in the most practical way possible. In this book, you’ll learn how to automate different tasks in the machine learning pipeline such as data preprocessing, feature selection, model training, model optimization, and much more. In addition to this, it demonstrates how you can use the available automation libraries, such as auto-sklearn and MLBox, and create and extend your own custom AutoML components for Machine Learning. By the end of this book, you will have a clearer understanding of the different aspects of automated Machine Learning, and you’ll be able to incorporate automation tasks using practical datasets. You can leverage your learning from this book to implement Machine Learning in your projects and get a step closer to winning various machine learning competitions. What you will learn Understand the fundamentals of Automated Machine Learning systems Explore auto-sklearn and MLBox for AutoML tasks Automate your preprocessing methods along with feature transformation Enhance feature selection and generation using the Python stack Assemble individual components of ML into a complete AutoML framework Demystify hyperparameter tuning to optimize your ML models Dive into Machine Learning concepts such as neural networks and autoencoders Understand the information costs and trade-offs associated with AutoML Who this book is for If you’re a budding data scientist, data analyst, or Machine Learning enthusiast and are new to the concept of automated machine learning, this book is ideal for you. You’ll also find this book useful if you’re an ML engineer or data professional interested in developing quick machine learning pipelines for your projects. Prior exposure to Python programming will help you get the best out of this book.

Hands-On Data Science for Marketing

Hands-On Data Science for Marketing PDF Author: Yoon Hyup Hwang
Publisher: Packt Publishing Ltd
ISBN: 178934882X
Category : Computers
Languages : en
Pages : 448

Get Book Here

Book Description
Optimize your marketing strategies through analytics and machine learning Key FeaturesUnderstand how data science drives successful marketing campaignsUse machine learning for better customer engagement, retention, and product recommendationsExtract insights from your data to optimize marketing strategies and increase profitabilityBook Description Regardless of company size, the adoption of data science and machine learning for marketing has been rising in the industry. With this book, you will learn to implement data science techniques to understand the drivers behind the successes and failures of marketing campaigns. This book is a comprehensive guide to help you understand and predict customer behaviors and create more effectively targeted and personalized marketing strategies. This is a practical guide to performing simple-to-advanced tasks, to extract hidden insights from the data and use them to make smart business decisions. You will understand what drives sales and increases customer engagements for your products. You will learn to implement machine learning to forecast which customers are more likely to engage with the products and have high lifetime value. This book will also show you how to use machine learning techniques to understand different customer segments and recommend the right products for each customer. Apart from learning to gain insights into consumer behavior using exploratory analysis, you will also learn the concept of A/B testing and implement it using Python and R. By the end of this book, you will be experienced enough with various data science and machine learning techniques to run and manage successful marketing campaigns for your business. What you will learnLearn how to compute and visualize marketing KPIs in Python and RMaster what drives successful marketing campaigns with data scienceUse machine learning to predict customer engagement and lifetime valueMake product recommendations that customers are most likely to buyLearn how to use A/B testing for better marketing decision makingImplement machine learning to understand different customer segmentsWho this book is for If you are a marketing professional, data scientist, engineer, or a student keen to learn how to apply data science to marketing, this book is what you need! It will be beneficial to have some basic knowledge of either Python or R to work through the examples. This book will also be beneficial for beginners as it covers basic-to-advanced data science concepts and applications in marketing with real-life examples.

Hands-On Financial Trading with Python

Hands-On Financial Trading with Python PDF Author: Jiri Pik
Publisher: Packt Publishing Ltd
ISBN: 1838988807
Category : Computers
Languages : en
Pages : 360

Get Book Here

Book Description
Build and backtest your algorithmic trading strategies to gain a true advantage in the market Key FeaturesGet quality insights from market data, stock analysis, and create your own data visualisationsLearn how to navigate the different features in Python's data analysis librariesStart systematically approaching quantitative research and strategy generation/backtesting in algorithmic tradingBook Description Creating an effective system to automate your trading can help you achieve two of every trader's key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage. This practical Python book will introduce you to Python and tell you exactly why it's the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. As you progress, you'll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets. What you will learnDiscover how quantitative analysis works by covering financial statistics and ARIMAUse core Python libraries to perform quantitative research and strategy development using real datasetsUnderstand how to access financial and economic data in PythonImplement effective data visualization with MatplotlibApply scientific computing and data visualization with popular Python librariesBuild and deploy backtesting algorithmic trading strategiesWho this book is for If you're a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don't have to be a fully-fledged programmer to dive into this book, but knowing how to use Python's core libraries and a solid grasp on statistics will help you get the most out of this book.

Hands-On Exploratory Data Analysis with Python

Hands-On Exploratory Data Analysis with Python PDF Author: Suresh Kumar Mukhiya
Publisher: Packt Publishing Ltd
ISBN: 178953562X
Category : Computers
Languages : en
Pages : 342

Get Book Here

Book Description
Discover techniques to summarize the characteristics of your data using PyPlot, NumPy, SciPy, and pandas Key FeaturesUnderstand the fundamental concepts of exploratory data analysis using PythonFind missing values in your data and identify the correlation between different variablesPractice graphical exploratory analysis techniques using Matplotlib and the Seaborn Python packageBook Description Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes. What you will learnImport, clean, and explore data to perform preliminary analysis using powerful Python packagesIdentify and transform erroneous data using different data wrangling techniquesExplore the use of multiple regression to describe non-linear relationshipsDiscover hypothesis testing and explore techniques of time-series analysisUnderstand and interpret results obtained from graphical analysisBuild, train, and optimize predictive models to estimate resultsPerform complex EDA techniques on open source datasetsWho this book is for This EDA book is for anyone interested in data analysis, especially students, statisticians, data analysts, and data scientists. The practical concepts presented in this book can be applied in various disciplines to enhance decision-making processes with data analysis and synthesis. Fundamental knowledge of Python programming and statistical concepts is all you need to get started with this book.