Author: Benjamin Planche
Publisher: Packt Publishing Ltd
ISBN: 1788839269
Category : Computers
Languages : en
Pages : 363
Book Description
A practical guide to building high performance systems for object detection, segmentation, video processing, smartphone applications, and more Key FeaturesDiscover how to build, train, and serve your own deep neural networks with TensorFlow 2 and KerasApply modern solutions to a wide range of applications such as object detection and video analysisLearn how to run your models on mobile devices and web pages and improve their performanceBook Description Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0. What you will learnCreate your own neural networks from scratchClassify images with modern architectures including Inception and ResNetDetect and segment objects in images with YOLO, Mask R-CNN, and U-NetTackle problems faced when developing self-driving cars and facial emotion recognition systemsBoost your application's performance with transfer learning, GANs, and domain adaptationUse recurrent neural networks (RNNs) for video analysisOptimize and deploy your networks on mobile devices and in the browserWho this book is for If you're new to deep learning and have some background in Python programming and image processing, like reading/writing image files and editing pixels, this book is for you. Even if you're an expert curious about the new TensorFlow 2 features, you'll find this book useful. While some theoretical concepts require knowledge of algebra and calculus, the book covers concrete examples focused on practical applications such as visual recognition for self-driving cars and smartphone apps.
Hands-on Computer Vision with TensorFlow 2
Author: Benjamin Planche
Publisher:
ISBN: 9781788830645
Category : Application software
Languages : en
Pages : 372
Book Description
Computer vision is achieving a new frontier of capabilities in fields like health, automobile or robotics. This book explores TensorFlow 2, Google's open-source AI framework, and teaches how to leverage deep neural networks for visual tasks. It will help you acquire the insight and skills to be a part of the exciting advances in computer vision.
Publisher:
ISBN: 9781788830645
Category : Application software
Languages : en
Pages : 372
Book Description
Computer vision is achieving a new frontier of capabilities in fields like health, automobile or robotics. This book explores TensorFlow 2, Google's open-source AI framework, and teaches how to leverage deep neural networks for visual tasks. It will help you acquire the insight and skills to be a part of the exciting advances in computer vision.
Hands-On Computer Vision with Julia
Author: Dmitrijs Cudihins
Publisher: Packt Publishing Ltd
ISBN: 1788999231
Category : Computers
Languages : en
Pages : 192
Book Description
Explore the various packages in Julia that support image processing and build neural networks for video processing and object tracking. Key Features Build a full-fledged image processing application using JuliaImages Perform basic to advanced image and video stream processing with Julia's APIs Understand and optimize various features of OpenCV with easy examples Book Description Hands-On Computer Vision with Julia is a thorough guide for developers who want to get started with building computer vision applications using Julia. Julia is well suited to image processing because it’s easy to use and lets you write easy-to-compile and efficient machine code. . This book begins by introducing you to Julia's image processing libraries such as Images.jl and ImageCore.jl. You’ll get to grips with analyzing and transforming images using JuliaImages; some of the techniques discussed include enhancing and adjusting images. As you make your way through the chapters, you’ll learn how to classify images, cluster them, and apply neural networks to solve computer vision problems. In the concluding chapters, you will explore OpenCV applications to perform real-time computer vision analysis, for example, face detection and object tracking. You will also understand Julia's interaction with Tesseract to perform optical character recognition and build an application that brings together all the techniques we introduced previously to consolidate the concepts learned. By end of the book, you will have understood how to utilize various Julia packages and a few open source libraries such as Tesseract and OpenCV to solve computer vision problems with ease. What you will learn Analyze image metadata and identify critical data using JuliaImages Apply filters and improve image quality and color schemes Extract 2D features for image comparison using JuliaFeatures Cluster and classify images with KNN/SVM machine learning algorithms Recognize text in an image using the Tesseract library Use OpenCV to recognize specific objects or faces in images and videos Build neural network and classify images with MXNet Who this book is for Hands-On Computer Vision with Julia is for Julia developers who are interested in learning how to perform image processing and want to explore the field of computer vision. Basic knowledge of Julia will help you understand the concepts more effectively.
Publisher: Packt Publishing Ltd
ISBN: 1788999231
Category : Computers
Languages : en
Pages : 192
Book Description
Explore the various packages in Julia that support image processing and build neural networks for video processing and object tracking. Key Features Build a full-fledged image processing application using JuliaImages Perform basic to advanced image and video stream processing with Julia's APIs Understand and optimize various features of OpenCV with easy examples Book Description Hands-On Computer Vision with Julia is a thorough guide for developers who want to get started with building computer vision applications using Julia. Julia is well suited to image processing because it’s easy to use and lets you write easy-to-compile and efficient machine code. . This book begins by introducing you to Julia's image processing libraries such as Images.jl and ImageCore.jl. You’ll get to grips with analyzing and transforming images using JuliaImages; some of the techniques discussed include enhancing and adjusting images. As you make your way through the chapters, you’ll learn how to classify images, cluster them, and apply neural networks to solve computer vision problems. In the concluding chapters, you will explore OpenCV applications to perform real-time computer vision analysis, for example, face detection and object tracking. You will also understand Julia's interaction with Tesseract to perform optical character recognition and build an application that brings together all the techniques we introduced previously to consolidate the concepts learned. By end of the book, you will have understood how to utilize various Julia packages and a few open source libraries such as Tesseract and OpenCV to solve computer vision problems with ease. What you will learn Analyze image metadata and identify critical data using JuliaImages Apply filters and improve image quality and color schemes Extract 2D features for image comparison using JuliaFeatures Cluster and classify images with KNN/SVM machine learning algorithms Recognize text in an image using the Tesseract library Use OpenCV to recognize specific objects or faces in images and videos Build neural network and classify images with MXNet Who this book is for Hands-On Computer Vision with Julia is for Julia developers who are interested in learning how to perform image processing and want to explore the field of computer vision. Basic knowledge of Julia will help you understand the concepts more effectively.
Hands-On Computer Vision
Author: Marc Pomplun
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814571975
Category : Computers
Languages : en
Pages : 650
Book Description
This book provides its readers the fundamental concepts in computer vision and how to design and implement vision algorithms for given problems. No prior knowledge of computer vision is required, but readers are expected to have experience in computer programming. Commented sample code in the C language and a variety of programming exercises in this book will assist the readers in developing an in-depth understanding of computer vision algorithms and their implementations. All major computer vision topics such as image preprocessing, edge detection, image segmentation, shape representation, texture, object recognition, image understanding, stereo vision, and motion are covered, together with their mathematical foundations and biological counterparts. By additionally providing hands-on experience on building computer vision systems from the ground up, this book will equip the readers with the skills necessary for developing professional vision solutions or conducting computer vision research in graduate schools.
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814571975
Category : Computers
Languages : en
Pages : 650
Book Description
This book provides its readers the fundamental concepts in computer vision and how to design and implement vision algorithms for given problems. No prior knowledge of computer vision is required, but readers are expected to have experience in computer programming. Commented sample code in the C language and a variety of programming exercises in this book will assist the readers in developing an in-depth understanding of computer vision algorithms and their implementations. All major computer vision topics such as image preprocessing, edge detection, image segmentation, shape representation, texture, object recognition, image understanding, stereo vision, and motion are covered, together with their mathematical foundations and biological counterparts. By additionally providing hands-on experience on building computer vision systems from the ground up, this book will equip the readers with the skills necessary for developing professional vision solutions or conducting computer vision research in graduate schools.
Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA
Author: Bhaumik Vaidya
Publisher: Packt Publishing Ltd
ISBN: 1789343682
Category : Computers
Languages : en
Pages : 373
Book Description
Discover how CUDA allows OpenCV to handle complex and rapidly growing image data processing in computer and machine vision by accessing the power of GPU Key FeaturesExplore examples to leverage the GPU processing power with OpenCV and CUDAEnhance the performance of algorithms on embedded hardware platformsDiscover C++ and Python libraries for GPU accelerationBook Description Computer vision has been revolutionizing a wide range of industries, and OpenCV is the most widely chosen tool for computer vision with its ability to work in multiple programming languages. Nowadays, in computer vision, there is a need to process large images in real time, which is difficult to handle for OpenCV on its own. This is where CUDA comes into the picture, allowing OpenCV to leverage powerful NVDIA GPUs. This book provides a detailed overview of integrating OpenCV with CUDA for practical applications. To start with, you’ll understand GPU programming with CUDA, an essential aspect for computer vision developers who have never worked with GPUs. You’ll then move on to exploring OpenCV acceleration with GPUs and CUDA by walking through some practical examples. Once you have got to grips with the core concepts, you’ll familiarize yourself with deploying OpenCV applications on NVIDIA Jetson TX1, which is popular for computer vision and deep learning applications. The last chapters of the book explain PyCUDA, a Python library that leverages the power of CUDA and GPUs for accelerations and can be used by computer vision developers who use OpenCV with Python. By the end of this book, you’ll have enhanced computer vision applications with the help of this book's hands-on approach. What you will learnUnderstand how to access GPU device properties and capabilities from CUDA programsLearn how to accelerate searching and sorting algorithmsDetect shapes such as lines and circles in imagesExplore object tracking and detection with algorithmsProcess videos using different video analysis techniques in Jetson TX1Access GPU device properties from the PyCUDA programUnderstand how kernel execution worksWho this book is for This book is a go-to guide for you if you are a developer working with OpenCV and want to learn how to process more complex image data by exploiting GPU processing. A thorough understanding of computer vision concepts and programming languages such as C++ or Python is expected.
Publisher: Packt Publishing Ltd
ISBN: 1789343682
Category : Computers
Languages : en
Pages : 373
Book Description
Discover how CUDA allows OpenCV to handle complex and rapidly growing image data processing in computer and machine vision by accessing the power of GPU Key FeaturesExplore examples to leverage the GPU processing power with OpenCV and CUDAEnhance the performance of algorithms on embedded hardware platformsDiscover C++ and Python libraries for GPU accelerationBook Description Computer vision has been revolutionizing a wide range of industries, and OpenCV is the most widely chosen tool for computer vision with its ability to work in multiple programming languages. Nowadays, in computer vision, there is a need to process large images in real time, which is difficult to handle for OpenCV on its own. This is where CUDA comes into the picture, allowing OpenCV to leverage powerful NVDIA GPUs. This book provides a detailed overview of integrating OpenCV with CUDA for practical applications. To start with, you’ll understand GPU programming with CUDA, an essential aspect for computer vision developers who have never worked with GPUs. You’ll then move on to exploring OpenCV acceleration with GPUs and CUDA by walking through some practical examples. Once you have got to grips with the core concepts, you’ll familiarize yourself with deploying OpenCV applications on NVIDIA Jetson TX1, which is popular for computer vision and deep learning applications. The last chapters of the book explain PyCUDA, a Python library that leverages the power of CUDA and GPUs for accelerations and can be used by computer vision developers who use OpenCV with Python. By the end of this book, you’ll have enhanced computer vision applications with the help of this book's hands-on approach. What you will learnUnderstand how to access GPU device properties and capabilities from CUDA programsLearn how to accelerate searching and sorting algorithmsDetect shapes such as lines and circles in imagesExplore object tracking and detection with algorithmsProcess videos using different video analysis techniques in Jetson TX1Access GPU device properties from the PyCUDA programUnderstand how kernel execution worksWho this book is for This book is a go-to guide for you if you are a developer working with OpenCV and want to learn how to process more complex image data by exploiting GPU processing. A thorough understanding of computer vision concepts and programming languages such as C++ or Python is expected.
Modern Computer Vision with PyTorch
Author: V Kishore Ayyadevara
Publisher: Packt Publishing Ltd
ISBN: 1839216530
Category : Computers
Languages : en
Pages : 805
Book Description
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1839216530
Category : Computers
Languages : en
Pages : 805
Book Description
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Hands-On Java Deep Learning for Computer Vision
Author: Klevis Ramo
Publisher: Packt Publishing Ltd
ISBN: 1838552138
Category : Computers
Languages : en
Pages : 253
Book Description
Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key FeaturesBuild real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognitionKnow best practices on effectively building and deploying deep learning models in JavaBook Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learnDiscover neural networks and their applications in Computer VisionExplore the popular Java frameworks and libraries for deep learningBuild deep neural networks in Java Implement an end-to-end image classification application in JavaPerform real-time video object detection using deep learningEnhance performance and deploy applications for productionWho this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.
Publisher: Packt Publishing Ltd
ISBN: 1838552138
Category : Computers
Languages : en
Pages : 253
Book Description
Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key FeaturesBuild real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognitionKnow best practices on effectively building and deploying deep learning models in JavaBook Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learnDiscover neural networks and their applications in Computer VisionExplore the popular Java frameworks and libraries for deep learningBuild deep neural networks in Java Implement an end-to-end image classification application in JavaPerform real-time video object detection using deep learningEnhance performance and deploy applications for productionWho this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.
Hands-On Algorithms for Computer Vision
Author: Amin Ahmadi Tazehkandi
Publisher:
ISBN: 9781789130942
Category : Computers
Languages : en
Pages : 290
Book Description
Create powerful, accurate, and real-time Computer Vision applications using a perfect blend of algorithms and filters. Also learn about object tracking and foreground extractions with a variety of new filters and algorithms. Key Features Filter, transform, and manipulate images using MAT class and OpenCV Framework Explore motion detection and object tracking with filters and algorithms Build object detectors using deep learning and machine learning algorithms Book Description An arena that has been positively impacted by the advancements in processing power and performance is the field of computer vision. It's only natural that over time, more and more algorithms are introduced to perform computer vision tasks more efficiently. Hands-On Algorithms for Computer Vision is a starting point for anyone who is interested in the field of computer vision and wants to explore the most practical algorithms used by professional computer vision developers. The book starts with the basics and builds up over the course of the chapters with hands-on examples for each algorithm. Right from the start, you will learn about the required tools for computer vision development, and how to install and configure them. You'll explore the OpenCV framework and its powerful collection of libraries and functions. Starting from the most simple image modifications, filtering, and transformations, you will gradually build up your knowledge of various algorithms until you are able to perform much more sophisticated tasks, such as real-time object detection using deep learning algorithms. What you will learn Get to grips with machine learning and artificial intelligence algorithms Read, write, and process images and videos Perform mathematical, matrix, and other types of image data operations Create and use histograms from back-projection images Detect motion, extract foregrounds, and track objects Extract key points with a collection of feature detector algorithms Develop cascade classifiers and use them, and train and test classifiers Employ TensorFlow object detection to detect multiple objects Who this book is for Hands-On Algorithms for Computer Vision helps those who want to learn algorithms in Computer Vision to create and customize their applications. This book will also help existing Computer Vision developers customize their applications. A basic understanding of computer vision and programming experience is needed.
Publisher:
ISBN: 9781789130942
Category : Computers
Languages : en
Pages : 290
Book Description
Create powerful, accurate, and real-time Computer Vision applications using a perfect blend of algorithms and filters. Also learn about object tracking and foreground extractions with a variety of new filters and algorithms. Key Features Filter, transform, and manipulate images using MAT class and OpenCV Framework Explore motion detection and object tracking with filters and algorithms Build object detectors using deep learning and machine learning algorithms Book Description An arena that has been positively impacted by the advancements in processing power and performance is the field of computer vision. It's only natural that over time, more and more algorithms are introduced to perform computer vision tasks more efficiently. Hands-On Algorithms for Computer Vision is a starting point for anyone who is interested in the field of computer vision and wants to explore the most practical algorithms used by professional computer vision developers. The book starts with the basics and builds up over the course of the chapters with hands-on examples for each algorithm. Right from the start, you will learn about the required tools for computer vision development, and how to install and configure them. You'll explore the OpenCV framework and its powerful collection of libraries and functions. Starting from the most simple image modifications, filtering, and transformations, you will gradually build up your knowledge of various algorithms until you are able to perform much more sophisticated tasks, such as real-time object detection using deep learning algorithms. What you will learn Get to grips with machine learning and artificial intelligence algorithms Read, write, and process images and videos Perform mathematical, matrix, and other types of image data operations Create and use histograms from back-projection images Detect motion, extract foregrounds, and track objects Extract key points with a collection of feature detector algorithms Develop cascade classifiers and use them, and train and test classifiers Employ TensorFlow object detection to detect multiple objects Who this book is for Hands-On Algorithms for Computer Vision helps those who want to learn algorithms in Computer Vision to create and customize their applications. This book will also help existing Computer Vision developers customize their applications. A basic understanding of computer vision and programming experience is needed.
Hands-On Computer Vision with TensorFlow 2
Author: Benjamin Planche
Publisher: Packt Publishing Ltd
ISBN: 1788839269
Category : Computers
Languages : en
Pages : 363
Book Description
A practical guide to building high performance systems for object detection, segmentation, video processing, smartphone applications, and more Key FeaturesDiscover how to build, train, and serve your own deep neural networks with TensorFlow 2 and KerasApply modern solutions to a wide range of applications such as object detection and video analysisLearn how to run your models on mobile devices and web pages and improve their performanceBook Description Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0. What you will learnCreate your own neural networks from scratchClassify images with modern architectures including Inception and ResNetDetect and segment objects in images with YOLO, Mask R-CNN, and U-NetTackle problems faced when developing self-driving cars and facial emotion recognition systemsBoost your application's performance with transfer learning, GANs, and domain adaptationUse recurrent neural networks (RNNs) for video analysisOptimize and deploy your networks on mobile devices and in the browserWho this book is for If you're new to deep learning and have some background in Python programming and image processing, like reading/writing image files and editing pixels, this book is for you. Even if you're an expert curious about the new TensorFlow 2 features, you'll find this book useful. While some theoretical concepts require knowledge of algebra and calculus, the book covers concrete examples focused on practical applications such as visual recognition for self-driving cars and smartphone apps.
Publisher: Packt Publishing Ltd
ISBN: 1788839269
Category : Computers
Languages : en
Pages : 363
Book Description
A practical guide to building high performance systems for object detection, segmentation, video processing, smartphone applications, and more Key FeaturesDiscover how to build, train, and serve your own deep neural networks with TensorFlow 2 and KerasApply modern solutions to a wide range of applications such as object detection and video analysisLearn how to run your models on mobile devices and web pages and improve their performanceBook Description Computer vision solutions are becoming increasingly common, making their way into fields such as health, automobile, social media, and robotics. This book will help you explore TensorFlow 2, the brand new version of Google's open source framework for machine learning. You will understand how to benefit from using convolutional neural networks (CNNs) for visual tasks. Hands-On Computer Vision with TensorFlow 2 starts with the fundamentals of computer vision and deep learning, teaching you how to build a neural network from scratch. You will discover the features that have made TensorFlow the most widely used AI library, along with its intuitive Keras interface. You'll then move on to building, training, and deploying CNNs efficiently. Complete with concrete code examples, the book demonstrates how to classify images with modern solutions, such as Inception and ResNet, and extract specific content using You Only Look Once (YOLO), Mask R-CNN, and U-Net. You will also build generative adversarial networks (GANs) and variational autoencoders (VAEs) to create and edit images, and long short-term memory networks (LSTMs) to analyze videos. In the process, you will acquire advanced insights into transfer learning, data augmentation, domain adaptation, and mobile and web deployment, among other key concepts. By the end of the book, you will have both the theoretical understanding and practical skills to solve advanced computer vision problems with TensorFlow 2.0. What you will learnCreate your own neural networks from scratchClassify images with modern architectures including Inception and ResNetDetect and segment objects in images with YOLO, Mask R-CNN, and U-NetTackle problems faced when developing self-driving cars and facial emotion recognition systemsBoost your application's performance with transfer learning, GANs, and domain adaptationUse recurrent neural networks (RNNs) for video analysisOptimize and deploy your networks on mobile devices and in the browserWho this book is for If you're new to deep learning and have some background in Python programming and image processing, like reading/writing image files and editing pixels, this book is for you. Even if you're an expert curious about the new TensorFlow 2 features, you'll find this book useful. While some theoretical concepts require knowledge of algebra and calculus, the book covers concrete examples focused on practical applications such as visual recognition for self-driving cars and smartphone apps.
PyTorch Deep Learning Hands-On
Author: Sherin Thomas
Publisher: Packt Publishing Ltd
ISBN: 1788833430
Category : Computers
Languages : en
Pages : 251
Book Description
Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook Description PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly. PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools. Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch. This book is ideal if you want to rapidly add PyTorch to your deep learning toolset. What you will learn Use PyTorch to build: Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks – create advanced computer vision systemsRecurrent Neural Networks – work with sequential data such as natural language and audioGenerative Adversarial Networks – create new content with models including SimpleGAN and CycleGANReinforcement Learning – develop systems that can solve complex problems such as driving or game playingDeep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models – package your models for high-performance production environmentsWho this book is for Machine learning engineers who want to put PyTorch to work.
Publisher: Packt Publishing Ltd
ISBN: 1788833430
Category : Computers
Languages : en
Pages : 251
Book Description
Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key FeaturesInternals and principles of PyTorchImplement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and moreBuild deep learning workflows and take deep learning models from prototyping to productionBook Description PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly. PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools. Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch. This book is ideal if you want to rapidly add PyTorch to your deep learning toolset. What you will learn Use PyTorch to build: Simple Neural Networks – build neural networks the PyTorch way, with high-level functions, optimizers, and moreConvolutional Neural Networks – create advanced computer vision systemsRecurrent Neural Networks – work with sequential data such as natural language and audioGenerative Adversarial Networks – create new content with models including SimpleGAN and CycleGANReinforcement Learning – develop systems that can solve complex problems such as driving or game playingDeep Learning workflows – move effectively from ideation to production with proper deep learning workflow using PyTorch and its utility packagesProduction-ready models – package your models for high-performance production environmentsWho this book is for Machine learning engineers who want to put PyTorch to work.
Hands-On Machine Learning with Azure
Author: Thomas K Abraham
Publisher: Packt Publishing Ltd
ISBN: 1789130271
Category : Computers
Languages : en
Pages : 331
Book Description
Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologies Key FeaturesLearn advanced concepts in Azure ML and the Cortana Intelligence Suite architectureExplore ML Server using SQL Server and HDInsight capabilitiesImplement various tools in Azure to build and deploy machine learning modelsBook Description Implementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage. However, Azure has created ML and AI services that are easy to implement in the cloud. Hands-On Machine Learning with Azure teaches you how to perform advanced ML projects in the cloud in a cost-effective way. The book begins by covering the benefits of ML and AI in the cloud. You will then explore Microsoft’s Team Data Science Process to establish a repeatable process for successful AI development and implementation. You will also gain an understanding of AI technologies available in Azure and the Cognitive Services APIs to integrate them into bot applications. This book lets you explore prebuilt templates with Azure Machine Learning Studio and build a model using canned algorithms that can be deployed as web services. The book then takes you through a preconfigured series of virtual machines in Azure targeted at AI development scenarios. You will get to grips with the ML Server and its capabilities in SQL and HDInsight. In the concluding chapters, you’ll integrate patterns with other non-AI services in Azure. By the end of this book, you will be fully equipped to implement smart cognitive actions in your models. What you will learnDiscover the benefits of leveraging the cloud for ML and AIUse Cognitive Services APIs to build intelligent botsBuild a model using canned algorithms from Microsoft and deploy it as a web serviceDeploy virtual machines in AI development scenariosApply R, Python, SQL Server, and Spark in AzureBuild and deploy deep learning solutions with CNTK, MMLSpark, and TensorFlowImplement model retraining in IoT, Streaming, and Blockchain solutionsExplore best practices for integrating ML and AI functions with ADLA and logic appsWho this book is for If you are a data scientist or developer familiar with Azure ML and cognitive services and want to create smart models and make sense of data in the cloud, this book is for you. You’ll also find this book useful if you want to bring powerful machine learning services into your cloud applications. Some experience with data manipulation and processing, using languages like SQL, Python, and R, will aid in understanding the concepts covered in this book
Publisher: Packt Publishing Ltd
ISBN: 1789130271
Category : Computers
Languages : en
Pages : 331
Book Description
Implement machine learning, cognitive services, and artificial intelligence solutions by leveraging Azure cloud technologies Key FeaturesLearn advanced concepts in Azure ML and the Cortana Intelligence Suite architectureExplore ML Server using SQL Server and HDInsight capabilitiesImplement various tools in Azure to build and deploy machine learning modelsBook Description Implementing Machine learning (ML) and Artificial Intelligence (AI) in the cloud had not been possible earlier due to the lack of processing power and storage. However, Azure has created ML and AI services that are easy to implement in the cloud. Hands-On Machine Learning with Azure teaches you how to perform advanced ML projects in the cloud in a cost-effective way. The book begins by covering the benefits of ML and AI in the cloud. You will then explore Microsoft’s Team Data Science Process to establish a repeatable process for successful AI development and implementation. You will also gain an understanding of AI technologies available in Azure and the Cognitive Services APIs to integrate them into bot applications. This book lets you explore prebuilt templates with Azure Machine Learning Studio and build a model using canned algorithms that can be deployed as web services. The book then takes you through a preconfigured series of virtual machines in Azure targeted at AI development scenarios. You will get to grips with the ML Server and its capabilities in SQL and HDInsight. In the concluding chapters, you’ll integrate patterns with other non-AI services in Azure. By the end of this book, you will be fully equipped to implement smart cognitive actions in your models. What you will learnDiscover the benefits of leveraging the cloud for ML and AIUse Cognitive Services APIs to build intelligent botsBuild a model using canned algorithms from Microsoft and deploy it as a web serviceDeploy virtual machines in AI development scenariosApply R, Python, SQL Server, and Spark in AzureBuild and deploy deep learning solutions with CNTK, MMLSpark, and TensorFlowImplement model retraining in IoT, Streaming, and Blockchain solutionsExplore best practices for integrating ML and AI functions with ADLA and logic appsWho this book is for If you are a data scientist or developer familiar with Azure ML and cognitive services and want to create smart models and make sense of data in the cloud, this book is for you. You’ll also find this book useful if you want to bring powerful machine learning services into your cloud applications. Some experience with data manipulation and processing, using languages like SQL, Python, and R, will aid in understanding the concepts covered in this book