Author: Lidia Angeleri Hügel
Publisher: Cambridge University Press
ISBN: 9780521680455
Category : Mathematics
Languages : en
Pages : 482
Book Description
A handbook of key articles providing both an introduction and reference for newcomers and experts alike.
Handbook of Tilting Theory
Author: Lidia Angeleri Hügel
Publisher: Cambridge University Press
ISBN: 9780521680455
Category : Mathematics
Languages : en
Pages : 482
Book Description
A handbook of key articles providing both an introduction and reference for newcomers and experts alike.
Publisher: Cambridge University Press
ISBN: 9780521680455
Category : Mathematics
Languages : en
Pages : 482
Book Description
A handbook of key articles providing both an introduction and reference for newcomers and experts alike.
Homological Theory of Representations
Author: Henning Krause
Publisher: Cambridge University Press
ISBN: 1108985815
Category : Mathematics
Languages : en
Pages : 518
Book Description
Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.
Publisher: Cambridge University Press
ISBN: 1108985815
Category : Mathematics
Languages : en
Pages : 518
Book Description
Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.
Generalized Lie Theory in Mathematics, Physics and Beyond
Author: Sergei D. Silvestrov
Publisher: Springer Science & Business Media
ISBN: 3540853324
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book explores the cutting edge of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics.
Publisher: Springer Science & Business Media
ISBN: 3540853324
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book explores the cutting edge of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics.
Handbook of Medical Imaging
Author: Jacob Beutel
Publisher: SPIE Press
ISBN: 9780819436214
Category : Medical
Languages : en
Pages : 542
Book Description
This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.
Publisher: SPIE Press
ISBN: 9780819436214
Category : Medical
Languages : en
Pages : 542
Book Description
This volume describes concurrent engineering developments that affect or are expected to influence future development of digital diagnostic imaging. It also covers current developments in Picture Archiving and Communications System (PACS) technology, with particular emphasis on integration of emerging imaging technologies into the hospital environment.
A Gentle Introduction to Homological Mirror Symmetry
Author: Raf Bocklandt
Publisher: Cambridge University Press
ISBN: 110848350X
Category : Mathematics
Languages : en
Pages : 403
Book Description
Introduction to homological mirror symmetry from the point of view of representation theory, suitable for graduate students.
Publisher: Cambridge University Press
ISBN: 110848350X
Category : Mathematics
Languages : en
Pages : 403
Book Description
Introduction to homological mirror symmetry from the point of view of representation theory, suitable for graduate students.
Partial Differential Equations and Fluid Mechanics
Author: James C. Robinson
Publisher: Cambridge University Press
ISBN: 052112512X
Category : Mathematics
Languages : en
Pages : 270
Book Description
Reviews and research articles summarizing a wide range of active research topics in fluid mechanics.
Publisher: Cambridge University Press
ISBN: 052112512X
Category : Mathematics
Languages : en
Pages : 270
Book Description
Reviews and research articles summarizing a wide range of active research topics in fluid mechanics.
Polynomials and the mod 2 Steenrod Algebra
Author: Grant Walker
Publisher: Cambridge University Press
ISBN: 1108414486
Category : Mathematics
Languages : en
Pages : 371
Book Description
The first of two volumes covering the Steenrod algebra and its various applications. Suitable as a graduate text.
Publisher: Cambridge University Press
ISBN: 1108414486
Category : Mathematics
Languages : en
Pages : 371
Book Description
The first of two volumes covering the Steenrod algebra and its various applications. Suitable as a graduate text.
Polynomials and the mod 2 Steenrod Algebra
Author: Grant Walker (Mathematician)
Publisher: Cambridge University Press
ISBN: 1108414451
Category : Polynomials
Languages : en
Pages : 381
Book Description
This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's 'hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n,F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.
Publisher: Cambridge University Press
ISBN: 1108414451
Category : Polynomials
Languages : en
Pages : 381
Book Description
This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's 'hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n,F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.
The Bloch–Kato Conjecture for the Riemann Zeta Function
Author: John Coates
Publisher: Cambridge University Press
ISBN: 1316241300
Category : Mathematics
Languages : en
Pages : 317
Book Description
There are still many arithmetic mysteries surrounding the values of the Riemann zeta function at the odd positive integers greater than one. For example, the matter of their irrationality, let alone transcendence, remains largely unknown. However, by extending ideas of Garland, Borel proved that these values are related to the higher K-theory of the ring of integers. Shortly afterwards, Bloch and Kato proposed a Tamagawa number-type conjecture for these values, and showed that it would follow from a result in motivic cohomology which was unknown at the time. This vital result from motivic cohomology was subsequently proven by Huber, Kings, and Wildeshaus. Bringing together key results from K-theory, motivic cohomology, and Iwasawa theory, this book is the first to give a complete proof, accessible to graduate students, of the Bloch–Kato conjecture for odd positive integers. It includes a new account of the results from motivic cohomology by Huber and Kings.
Publisher: Cambridge University Press
ISBN: 1316241300
Category : Mathematics
Languages : en
Pages : 317
Book Description
There are still many arithmetic mysteries surrounding the values of the Riemann zeta function at the odd positive integers greater than one. For example, the matter of their irrationality, let alone transcendence, remains largely unknown. However, by extending ideas of Garland, Borel proved that these values are related to the higher K-theory of the ring of integers. Shortly afterwards, Bloch and Kato proposed a Tamagawa number-type conjecture for these values, and showed that it would follow from a result in motivic cohomology which was unknown at the time. This vital result from motivic cohomology was subsequently proven by Huber, Kings, and Wildeshaus. Bringing together key results from K-theory, motivic cohomology, and Iwasawa theory, this book is the first to give a complete proof, accessible to graduate students, of the Bloch–Kato conjecture for odd positive integers. It includes a new account of the results from motivic cohomology by Huber and Kings.
Surveys in Combinatorics 2017
Author: Anders Claesson
Publisher: Cambridge University Press
ISBN: 1108350356
Category : Mathematics
Languages : en
Pages : 451
Book Description
This volume contains nine survey articles which provide expanded accounts of plenary seminars given at the British Combinatorial Conference at the University of Strathclyde in July 2017. This biennial conference is a well-established international event attracting speakers from around the world. Written by internationally recognised experts in the field, these articles represent a timely snapshot of the state of the art in the different areas of combinatorics. Topics covered include the robustness of graph properties, the spt-function of Andrews, switching techniques for edge decompositions of graphs, monotone cellular automata, and applications of relative entropy in additive combinatorics. The book will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.
Publisher: Cambridge University Press
ISBN: 1108350356
Category : Mathematics
Languages : en
Pages : 451
Book Description
This volume contains nine survey articles which provide expanded accounts of plenary seminars given at the British Combinatorial Conference at the University of Strathclyde in July 2017. This biennial conference is a well-established international event attracting speakers from around the world. Written by internationally recognised experts in the field, these articles represent a timely snapshot of the state of the art in the different areas of combinatorics. Topics covered include the robustness of graph properties, the spt-function of Andrews, switching techniques for edge decompositions of graphs, monotone cellular automata, and applications of relative entropy in additive combinatorics. The book will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.