Author: Ali Mohamed
Publisher: Springer Nature
ISBN: 3031075129
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
The introduction of nature-inspired optimization algorithms (NIOAs), over the past three decades, helped solve nonlinear, high-dimensional, and complex computational optimization problems. NIOAs have been originally developed to overcome the challenges of global optimization problems such as nonlinearity, non-convexity, non-continuity, non-differentiability, and/or multimodality which traditional numerical optimization techniques had difficulties solving. The main objective for this book is to make available a self-contained collection of modern research addressing the general bound-constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Handbook of Nature-Inspired Optimization Algorithms: The State of the Art
Author: Ali Mohamed
Publisher: Springer Nature
ISBN: 3031075129
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
The introduction of nature-inspired optimization algorithms (NIOAs), over the past three decades, helped solve nonlinear, high-dimensional, and complex computational optimization problems. NIOAs have been originally developed to overcome the challenges of global optimization problems such as nonlinearity, non-convexity, non-continuity, non-differentiability, and/or multimodality which traditional numerical optimization techniques had difficulties solving. The main objective for this book is to make available a self-contained collection of modern research addressing the general bound-constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Publisher: Springer Nature
ISBN: 3031075129
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
The introduction of nature-inspired optimization algorithms (NIOAs), over the past three decades, helped solve nonlinear, high-dimensional, and complex computational optimization problems. NIOAs have been originally developed to overcome the challenges of global optimization problems such as nonlinearity, non-convexity, non-continuity, non-differentiability, and/or multimodality which traditional numerical optimization techniques had difficulties solving. The main objective for this book is to make available a self-contained collection of modern research addressing the general bound-constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Handbook of Nature-Inspired Optimization Algorithms: The State of the Art
Author: Ali Wagdy Mohamed
Publisher: Springer Nature
ISBN: 3031075161
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book presents recent contributions and significant development, advanced issues, and challenges. In real-world problems and applications, most of the optimization problems involve different types of constraints. These problems are called constrained optimization problems (COPs). The optimization of the constrained optimization problems is considered a challenging task since the optimum solution(s) must be feasible. In their original design, evolutionary algorithms (EAs) are able to solve unconstrained optimization problems effectively. As a result, in the past decade, many researchers have developed a variety of constraint handling techniques, incorporated into (EAs) designs, to counter this deficiency. The main objective for this book is to make available a self-contained collection of modern research addressing the general constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Publisher: Springer Nature
ISBN: 3031075161
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book presents recent contributions and significant development, advanced issues, and challenges. In real-world problems and applications, most of the optimization problems involve different types of constraints. These problems are called constrained optimization problems (COPs). The optimization of the constrained optimization problems is considered a challenging task since the optimum solution(s) must be feasible. In their original design, evolutionary algorithms (EAs) are able to solve unconstrained optimization problems effectively. As a result, in the past decade, many researchers have developed a variety of constraint handling techniques, incorporated into (EAs) designs, to counter this deficiency. The main objective for this book is to make available a self-contained collection of modern research addressing the general constrained optimization problems in many real-world applications using nature-inspired optimization algorithms. This book is suitable for a graduate class on optimization, but will also be useful for interested senior students working on their research projects.
Handbook of Research on Nature-Inspired Computing for Economics and Management
Author: Rennard, Jean-Philippe
Publisher: IGI Global
ISBN: 1591409853
Category : Business & Economics
Languages : en
Pages : 993
Book Description
"This book provides applications of nature inspired computing for economic theory and practice, finance and stock-market, manufacturing systems, marketing, e-commerce, e-auctions, multi-agent systems and bottom-up simulations for social sciences and operations management"--Provided by publisher.
Publisher: IGI Global
ISBN: 1591409853
Category : Business & Economics
Languages : en
Pages : 993
Book Description
"This book provides applications of nature inspired computing for economic theory and practice, finance and stock-market, manufacturing systems, marketing, e-commerce, e-auctions, multi-agent systems and bottom-up simulations for social sciences and operations management"--Provided by publisher.
Nature-Inspired Optimization Algorithms
Author: Xin-She Yang
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Nature-Inspired Optimization Algorithms
Author: Aditya Khamparia
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311067615X
Category : Computers
Languages : en
Pages : 204
Book Description
This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311067615X
Category : Computers
Languages : en
Pages : 204
Book Description
This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations
Solving Constrained Single Objective Real-parameter Optimization Problems
Author: Ali Mohamed
Publisher:
ISBN: 9783031075179
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9783031075179
Category :
Languages : en
Pages : 0
Book Description
Handbook of Research on Natural Computing for Optimization Problems
Author: Mandal, Jyotsna Kumar
Publisher: IGI Global
ISBN: 1522500596
Category : Computers
Languages : en
Pages : 1199
Book Description
Nature-inspired computation is an interdisciplinary topic area that connects the natural sciences to computer science. Since natural computing is utilized in a variety of disciplines, it is imperative to research its capabilities in solving optimization issues. The Handbook of Research on Natural Computing for Optimization Problems discusses nascent optimization procedures in nature-inspired computation and the innovative tools and techniques being utilized in the field. Highlighting empirical research and best practices concerning various optimization issues, this publication is a comprehensive reference for researchers, academicians, students, scientists, and technology developers interested in a multidisciplinary perspective on natural computational systems.
Publisher: IGI Global
ISBN: 1522500596
Category : Computers
Languages : en
Pages : 1199
Book Description
Nature-inspired computation is an interdisciplinary topic area that connects the natural sciences to computer science. Since natural computing is utilized in a variety of disciplines, it is imperative to research its capabilities in solving optimization issues. The Handbook of Research on Natural Computing for Optimization Problems discusses nascent optimization procedures in nature-inspired computation and the innovative tools and techniques being utilized in the field. Highlighting empirical research and best practices concerning various optimization issues, this publication is a comprehensive reference for researchers, academicians, students, scientists, and technology developers interested in a multidisciplinary perspective on natural computational systems.
Nature-inspired Metaheuristic Algorithms
Author: Xin-She Yang
Publisher: Luniver Press
ISBN: 1905986289
Category : Computers
Languages : en
Pages : 148
Book Description
Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.
Publisher: Luniver Press
ISBN: 1905986289
Category : Computers
Languages : en
Pages : 148
Book Description
Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.
Handbook of Whale Optimization Algorithm
Author: Seyedali Mirjalili
Publisher: Elsevier
ISBN: 0323953646
Category : Computers
Languages : en
Pages : 688
Book Description
Handbook of Whale Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides the most in-depth look at an emerging meta-heuristic that has been widely used in both science and industry. Whale Optimization Algorithm has been cited more than 5000 times in Google Scholar, thus solving optimization problems using this algorithm requires addressing a number of challenges including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters to name a few. This handbook provides readers with in-depth analysis of this algorithm and existing methods in the literature to cope with such challenges. The authors and editors also propose several improvements, variants and hybrids of this algorithm. Several applications are also covered to demonstrate the applicability of methods in this book. Provides in-depth analysis of equations, mathematical models and mechanisms of the Whale Optimization Algorithm Proposes different variants of the Whale Optimization Algorithm to solve binary, multiobjective, noisy, dynamic and combinatorial optimization problems Demonstrates how to design, develop and test different hybrids of Whale Optimization Algorithm Introduces several application areas of the Whale Optimization Algorithm, focusing on sustainability Includes source code from applications and algorithms that is available online
Publisher: Elsevier
ISBN: 0323953646
Category : Computers
Languages : en
Pages : 688
Book Description
Handbook of Whale Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides the most in-depth look at an emerging meta-heuristic that has been widely used in both science and industry. Whale Optimization Algorithm has been cited more than 5000 times in Google Scholar, thus solving optimization problems using this algorithm requires addressing a number of challenges including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters to name a few. This handbook provides readers with in-depth analysis of this algorithm and existing methods in the literature to cope with such challenges. The authors and editors also propose several improvements, variants and hybrids of this algorithm. Several applications are also covered to demonstrate the applicability of methods in this book. Provides in-depth analysis of equations, mathematical models and mechanisms of the Whale Optimization Algorithm Proposes different variants of the Whale Optimization Algorithm to solve binary, multiobjective, noisy, dynamic and combinatorial optimization problems Demonstrates how to design, develop and test different hybrids of Whale Optimization Algorithm Introduces several application areas of the Whale Optimization Algorithm, focusing on sustainability Includes source code from applications and algorithms that is available online
Handbook of Intelligent Computing and Optimization for Sustainable Development
Author: Mukhdeep Singh Manshahia
Publisher: John Wiley & Sons
ISBN: 1119792622
Category : Technology & Engineering
Languages : en
Pages : 944
Book Description
HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.
Publisher: John Wiley & Sons
ISBN: 1119792622
Category : Technology & Engineering
Languages : en
Pages : 944
Book Description
HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.