Author: Shiv Narayan
Publisher: Springer Nature
ISBN: 9811664412
Category : Technology & Engineering
Languages : en
Pages : 744
Book Description
This volume provides a consolidated reference for the applications of frequency selective surfaces (FSS) technology in different sectors such as wireless communications, smart buildings, microwave and medical industries. It covers all aspects of metamaterial FSS technology starting from theoretical simulation, fabrication and measurement all the way to actual hardware implementation. Also included are in-depth discussions on the design methodologies of metamaterial FSS structures and their practical implementation in devices and components. It will be of interest to researchers and engineers working on developing metamaterial-FSS technology.
Handbook of Metamaterial-Derived Frequency Selective Surfaces
Author: Shiv Narayan
Publisher: Springer Nature
ISBN: 9811664412
Category : Technology & Engineering
Languages : en
Pages : 744
Book Description
This volume provides a consolidated reference for the applications of frequency selective surfaces (FSS) technology in different sectors such as wireless communications, smart buildings, microwave and medical industries. It covers all aspects of metamaterial FSS technology starting from theoretical simulation, fabrication and measurement all the way to actual hardware implementation. Also included are in-depth discussions on the design methodologies of metamaterial FSS structures and their practical implementation in devices and components. It will be of interest to researchers and engineers working on developing metamaterial-FSS technology.
Publisher: Springer Nature
ISBN: 9811664412
Category : Technology & Engineering
Languages : en
Pages : 744
Book Description
This volume provides a consolidated reference for the applications of frequency selective surfaces (FSS) technology in different sectors such as wireless communications, smart buildings, microwave and medical industries. It covers all aspects of metamaterial FSS technology starting from theoretical simulation, fabrication and measurement all the way to actual hardware implementation. Also included are in-depth discussions on the design methodologies of metamaterial FSS structures and their practical implementation in devices and components. It will be of interest to researchers and engineers working on developing metamaterial-FSS technology.
Electromagnetic Wave Control Techniques of Metasurfaces and Metamaterials
Author: Wen, Jingda
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
In the ever-evolving landscape of electromagnetic wave control, researchers face the pressing challenge of keeping pace with the rapid advancements in metasurface and metamaterial methods. As these technologies become increasingly integral to various engineering applications, educators and researchers seek a comprehensive resource that outlines the current state of the field and offers insights into its future prospects. Electromagnetic Wave Control Techniques of Metasurfaces and Metamaterials emerges as a timely solution, providing a detailed overview and a forward-looking perspective on wave control research using metasurfaces and metamaterials. With a firm focus on bridging the gap between theory and application, this book meets the critical need for a comprehensive understanding of key topics such as frequency selective surfaces, metasurface and metamaterial absorbers, reflectors, and the integration of deep learning and machine learning in these domains. This book equips readers with the knowledge and tools necessary to tackle real-world challenges in wavefront control, beam steering, and phase control by delving into the intricacies of broadband metasurfaces, metamaterials, and the underlying physics. Furthermore, it explores the unique capabilities of chiral metasurfaces and metamaterials, illuminating their diverse engineering applications and empowering the readers with practical insights.
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
In the ever-evolving landscape of electromagnetic wave control, researchers face the pressing challenge of keeping pace with the rapid advancements in metasurface and metamaterial methods. As these technologies become increasingly integral to various engineering applications, educators and researchers seek a comprehensive resource that outlines the current state of the field and offers insights into its future prospects. Electromagnetic Wave Control Techniques of Metasurfaces and Metamaterials emerges as a timely solution, providing a detailed overview and a forward-looking perspective on wave control research using metasurfaces and metamaterials. With a firm focus on bridging the gap between theory and application, this book meets the critical need for a comprehensive understanding of key topics such as frequency selective surfaces, metasurface and metamaterial absorbers, reflectors, and the integration of deep learning and machine learning in these domains. This book equips readers with the knowledge and tools necessary to tackle real-world challenges in wavefront control, beam steering, and phase control by delving into the intricacies of broadband metasurfaces, metamaterials, and the underlying physics. Furthermore, it explores the unique capabilities of chiral metasurfaces and metamaterials, illuminating their diverse engineering applications and empowering the readers with practical insights.
Electromagnetic Composites Handbook, Second Edition
Author: Rick Moore
Publisher: McGraw Hill Professional
ISBN: 1259585050
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Theoretical, computational, and experimental electromagnetic modeling and characterization This engineering and scientific handbook offers extensive coverage of electromagnetic modeling and characterization of composite materials from the theoretical, computational, and experimental points of view. You will get unique data for non-conducting dielectrics, semiconducting, conducting, and magnetic materials, and composites composed of two or more molecularly distinct compounds. The goal of the book is to contribute to current and visionary electromagnetic composite applications and extend the existing database for composites. Electromagnetic Composites Handbook: Models, Measurement, and Characterization is presented in a clear, hierarchical style, progressing from basic concepts through simple and more complex models, and finally to data verifying the models. Provides a large collection of tabulated data for more than 300 complex composite materials Information presented will aid in the development of multifunctional material designs The data is a direct extension from Arthur Von Hippel's landmark Dielectric Materials and Application
Publisher: McGraw Hill Professional
ISBN: 1259585050
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
Theoretical, computational, and experimental electromagnetic modeling and characterization This engineering and scientific handbook offers extensive coverage of electromagnetic modeling and characterization of composite materials from the theoretical, computational, and experimental points of view. You will get unique data for non-conducting dielectrics, semiconducting, conducting, and magnetic materials, and composites composed of two or more molecularly distinct compounds. The goal of the book is to contribute to current and visionary electromagnetic composite applications and extend the existing database for composites. Electromagnetic Composites Handbook: Models, Measurement, and Characterization is presented in a clear, hierarchical style, progressing from basic concepts through simple and more complex models, and finally to data verifying the models. Provides a large collection of tabulated data for more than 300 complex composite materials Information presented will aid in the development of multifunctional material designs The data is a direct extension from Arthur Von Hippel's landmark Dielectric Materials and Application
Applications of Metamaterials
Author: Filippo Capolino
Publisher: CRC Press
ISBN: 1420054244
Category : Science
Languages : en
Pages : 763
Book Description
This book uses the first volume’s exploration of theory, basic properties, and modeling topics to develop readers’ understanding of applications and devices that are based on artificial materials. It explores a wide range of applications in fields including electronics, telecommunications, sensing, medical instrumentation, and data storage. The text also includes a practical user’s guide and explores key areas in which artificial materials have developed. It includes experts’ perspectives on current and future applications of metamaterials, to present a well-rounded view on state-of-the-art technologies.
Publisher: CRC Press
ISBN: 1420054244
Category : Science
Languages : en
Pages : 763
Book Description
This book uses the first volume’s exploration of theory, basic properties, and modeling topics to develop readers’ understanding of applications and devices that are based on artificial materials. It explores a wide range of applications in fields including electronics, telecommunications, sensing, medical instrumentation, and data storage. The text also includes a practical user’s guide and explores key areas in which artificial materials have developed. It includes experts’ perspectives on current and future applications of metamaterials, to present a well-rounded view on state-of-the-art technologies.
Frequency Selective Surfaces
Author: Ben A. Munk
Publisher: John Wiley & Sons
ISBN: 0471723762
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
"...Ben has been the world-wide guru of this technology, providing support to applications of all types. His genius lies in handling the extremely complex mathematics, while at the same time seeing the practical matters involved in applying the results. As this book clearly shows, Ben is able to relate to novices interested in using frequency selective surfaces and to explain technical details in an understandable way, liberally spiced with his special brand of humor... Ben Munk has written a book that represents the epitome of practical understanding of Frequency Selective Surfaces. He deserves all honors that might befall him for this achievement." -William F. Bahret. Mr. W. Bahret was with the United States Air Force but is now retired. From the early 50s he sponsored numerous projects concerning Radar Cross Section of airborne platforms in particular antennas and absorbers. Under his leadership grew many of the concepts used extensively today, as for example the metallic radome. In fact, he is by many considered to be the father of stealth technology. "This book compiles under one cover most of Munk's research over the past three decades. It is woven with the physical insight that he has gained and further developed as his career has grown. Ben uses mathematics to whatever extent is needed, and only as needed. This material is written so that it should be useful to engineers with a background in electromagnetics. I strongly recommend this book to any engineer with any interest in phased arrays and/or frequency selective surfaces. The physical insight that may be gained from this book will enhance their ability to treat additional array problems of their own." -Leon Peters, Jr. Professor Leon Peters, Jr., was a professor at the Ohio State University but is now retired. From the early sixties he worked on, among many other things, RCS problems involving antennas and absorbers. This book presents the complete derivation of the Periodic Method of Moments, which enables the reader to calculate quickly and efficiently the transmission and reflection properties of multi-layered Frequency Selective Surfaces comprised of either wire and/or slot elements of arbitrary shape and located in a stratified medium. However, it also gives the reader the tools to analyze multi-layered FSS's leading to specific designs of the very important Hybrid Radome, which is characterized by constant band width with angle of incidence and polarization. Further, it investigates in great detail bandstop filters with large as well as narrow bandwidth (dichroic surfaces). It also discusses for the first time, lossy elements used in producing Circuit Analog absorbers. Finally, the last chapter deals with power breakdown of FSS's when exposed to pulsed signals with high peak power. The approach followed by most other presentations simply consists of expanding the fields around the FSS, matching the boundary conditions and writing a computer program. While this enables the user to obtain calculated results, it gives very little physical insight and no help in how to design actual multi-layered FSS's. In contrast, the approach used in this title analyzes all curves of desired shapes. In particular, it discusses in great detail how to produce radomes made of FSS's located in a stratified medium (Hybrid Radomes), with constant band width for all angles of incidence and polarizations. Numerous examples are given of great practical interest. More specifically, Chapter 7 deals with the theory and design of bandpass radomes with constant bandwidth and flat tops. Examples are given for mono-, bi- and tri-planar designs. Chapter 8 deals with bandstop filters with broad as well as narrow bandwidth. Chapter 9 deals with multi-layered FSS of lossy elements, namely the so-called Circuit Analog Absorbers, designed to yield outstanding absorption with more than a decade of bandwidth. Features material previously labeled as classified by the United States Air Force.
Publisher: John Wiley & Sons
ISBN: 0471723762
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
"...Ben has been the world-wide guru of this technology, providing support to applications of all types. His genius lies in handling the extremely complex mathematics, while at the same time seeing the practical matters involved in applying the results. As this book clearly shows, Ben is able to relate to novices interested in using frequency selective surfaces and to explain technical details in an understandable way, liberally spiced with his special brand of humor... Ben Munk has written a book that represents the epitome of practical understanding of Frequency Selective Surfaces. He deserves all honors that might befall him for this achievement." -William F. Bahret. Mr. W. Bahret was with the United States Air Force but is now retired. From the early 50s he sponsored numerous projects concerning Radar Cross Section of airborne platforms in particular antennas and absorbers. Under his leadership grew many of the concepts used extensively today, as for example the metallic radome. In fact, he is by many considered to be the father of stealth technology. "This book compiles under one cover most of Munk's research over the past three decades. It is woven with the physical insight that he has gained and further developed as his career has grown. Ben uses mathematics to whatever extent is needed, and only as needed. This material is written so that it should be useful to engineers with a background in electromagnetics. I strongly recommend this book to any engineer with any interest in phased arrays and/or frequency selective surfaces. The physical insight that may be gained from this book will enhance their ability to treat additional array problems of their own." -Leon Peters, Jr. Professor Leon Peters, Jr., was a professor at the Ohio State University but is now retired. From the early sixties he worked on, among many other things, RCS problems involving antennas and absorbers. This book presents the complete derivation of the Periodic Method of Moments, which enables the reader to calculate quickly and efficiently the transmission and reflection properties of multi-layered Frequency Selective Surfaces comprised of either wire and/or slot elements of arbitrary shape and located in a stratified medium. However, it also gives the reader the tools to analyze multi-layered FSS's leading to specific designs of the very important Hybrid Radome, which is characterized by constant band width with angle of incidence and polarization. Further, it investigates in great detail bandstop filters with large as well as narrow bandwidth (dichroic surfaces). It also discusses for the first time, lossy elements used in producing Circuit Analog absorbers. Finally, the last chapter deals with power breakdown of FSS's when exposed to pulsed signals with high peak power. The approach followed by most other presentations simply consists of expanding the fields around the FSS, matching the boundary conditions and writing a computer program. While this enables the user to obtain calculated results, it gives very little physical insight and no help in how to design actual multi-layered FSS's. In contrast, the approach used in this title analyzes all curves of desired shapes. In particular, it discusses in great detail how to produce radomes made of FSS's located in a stratified medium (Hybrid Radomes), with constant band width for all angles of incidence and polarizations. Numerous examples are given of great practical interest. More specifically, Chapter 7 deals with the theory and design of bandpass radomes with constant bandwidth and flat tops. Examples are given for mono-, bi- and tri-planar designs. Chapter 8 deals with bandstop filters with broad as well as narrow bandwidth. Chapter 9 deals with multi-layered FSS of lossy elements, namely the so-called Circuit Analog Absorbers, designed to yield outstanding absorption with more than a decade of bandwidth. Features material previously labeled as classified by the United States Air Force.
Antenna Engineering Handbook
Author: John Volakis
Publisher: McGraw Hill Professional
ISBN: 1259644707
Category : Technology & Engineering
Languages : en
Pages : 1424
Book Description
The gold-standard reference on the design and application of classic and modern antennas—fully updated to reflect the latest advances and technologiesThis new edition of the “bible of antenna engineering” has been updated to provide start-to-finish coverage of the latest innovations in antenna design and application. You will find in-depth discussion of antennas used in modern communication systems, mobile and personal wireless technologies, satellites, radar deployments, flexible electronics, and other emerging technologies, including 5G, terahertz, and wearable electronics. Antenna Engineering Handbook, Fifth Edition, is bolstered by real-world examples, hundreds of illustrations, and an emphasis on the practical aspects of antennas.Featuring 60 chapters and contributions from more than 80 renowned experts, this acclaimed resource is edited by one of the world’s leading antenna authorities. This edition features all of the classic antenna types, plus new and emerging designs, with 13 all-new chapters and important updates to nearly all chapters from past editions.Antenna Engineering Handbook, Fifth Edition, clearly explains cutting-edge applications in WLANs, automotive systems, PDAs, and handheld devices, making it an indispensable companion for today’s antenna practitioners and developers.Coverage includes:•Antenna basics and classic antennas•Design approaches for antennas and arrays•Wideband and multiband antennas•Antennas for mobile devices and PDAs, automotive applications, and aircraft•Base station and smart antennas•Beamforming and 5G antennas•Millimeter-wave and terahertz antennas•Flexible, wearable, thin film, origami, dielectric, and on-chip antennas•MIMO antennas and phased arrays•Direction-finding and GPS antennas•Active antennas•Low-profile wideband antennas•Nanoantennas•Reflectors and other satellite and radio-telescope antennas•Low-frequency, HF, VHF, UHF, ECM, and ESM antennas•Impedance-matching techniques and material characteristics•Metastructured and frequency selective surfaces•Propagation and guided structures•Computational techniques and toolsets•Indoor and outdoor measurements
Publisher: McGraw Hill Professional
ISBN: 1259644707
Category : Technology & Engineering
Languages : en
Pages : 1424
Book Description
The gold-standard reference on the design and application of classic and modern antennas—fully updated to reflect the latest advances and technologiesThis new edition of the “bible of antenna engineering” has been updated to provide start-to-finish coverage of the latest innovations in antenna design and application. You will find in-depth discussion of antennas used in modern communication systems, mobile and personal wireless technologies, satellites, radar deployments, flexible electronics, and other emerging technologies, including 5G, terahertz, and wearable electronics. Antenna Engineering Handbook, Fifth Edition, is bolstered by real-world examples, hundreds of illustrations, and an emphasis on the practical aspects of antennas.Featuring 60 chapters and contributions from more than 80 renowned experts, this acclaimed resource is edited by one of the world’s leading antenna authorities. This edition features all of the classic antenna types, plus new and emerging designs, with 13 all-new chapters and important updates to nearly all chapters from past editions.Antenna Engineering Handbook, Fifth Edition, clearly explains cutting-edge applications in WLANs, automotive systems, PDAs, and handheld devices, making it an indispensable companion for today’s antenna practitioners and developers.Coverage includes:•Antenna basics and classic antennas•Design approaches for antennas and arrays•Wideband and multiband antennas•Antennas for mobile devices and PDAs, automotive applications, and aircraft•Base station and smart antennas•Beamforming and 5G antennas•Millimeter-wave and terahertz antennas•Flexible, wearable, thin film, origami, dielectric, and on-chip antennas•MIMO antennas and phased arrays•Direction-finding and GPS antennas•Active antennas•Low-profile wideband antennas•Nanoantennas•Reflectors and other satellite and radio-telescope antennas•Low-frequency, HF, VHF, UHF, ECM, and ESM antennas•Impedance-matching techniques and material characteristics•Metastructured and frequency selective surfaces•Propagation and guided structures•Computational techniques and toolsets•Indoor and outdoor measurements
Metamaterial Electromagnetic Wave Absorbers
Author: Willie J. Padilla
Publisher: Morgan & Claypool Publishers
ISBN: 1636392601
Category : Science
Languages : en
Pages : 199
Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Publisher: Morgan & Claypool Publishers
ISBN: 1636392601
Category : Science
Languages : en
Pages : 199
Book Description
Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.
Electromagnetic Metasurfaces
Author: Karim Achouri
Publisher: John Wiley & Sons
ISBN: 1119525160
Category : Science
Languages : en
Pages : 226
Book Description
Discover a comprehensive exploration of recent developments and fundamental concepts in the applications of metasurfaces. In Electromagnetic Metasurfaces: Theory and Applications, distinguished researchers and authors Karim Achouri and Christophe Caloz deliver an introduction to the fundamentals and applications of metasurfaces and an insightful analysis of recent and future developments in the field. The book describes the precursors and history of metasurfaces before continuing on to an exploration of the physical insights that can be gleaned from the material parameters of the metasurface. You’ll learn how to compute the fields scattered by a metasurface with known material parameters being illuminated by an arbitrary incident field, as well as how to realize a practical metasurface and relate its material parameters to its physical structures. The authors provide examples to illustrate all the concepts discussed in the book to improve and simplify reader understanding. Electromagnetic Metasurfaces concludes with an incisive discussion of the likely future directions and research opportunities in the field. Readers will also benefit from the inclusion of: A thorough introduction to metamaterials, the concept of metasurfaces, and metasurface precursors An exploration of electromagnetic modeling and theory, including metasurfaces as zero-thickness sheets and bianisotropic susceptibility tensors A practical discussion of susceptibility synthesis, including four-parameters synthesis, more than four-parameters synthesis, and the addition of susceptibility components A concise treatment of scattered-field analysis, including approximate analytical methods, and finite-difference frequency-domain techniques Perfect for researchers in metamaterial sciences and engineers working with microwave, THz, and optical technologies, Electromagnetic Metasurfaces: Theory and Applications will also earn a place in the libraries of graduate and undergraduate students in physics and electrical engineering.
Publisher: John Wiley & Sons
ISBN: 1119525160
Category : Science
Languages : en
Pages : 226
Book Description
Discover a comprehensive exploration of recent developments and fundamental concepts in the applications of metasurfaces. In Electromagnetic Metasurfaces: Theory and Applications, distinguished researchers and authors Karim Achouri and Christophe Caloz deliver an introduction to the fundamentals and applications of metasurfaces and an insightful analysis of recent and future developments in the field. The book describes the precursors and history of metasurfaces before continuing on to an exploration of the physical insights that can be gleaned from the material parameters of the metasurface. You’ll learn how to compute the fields scattered by a metasurface with known material parameters being illuminated by an arbitrary incident field, as well as how to realize a practical metasurface and relate its material parameters to its physical structures. The authors provide examples to illustrate all the concepts discussed in the book to improve and simplify reader understanding. Electromagnetic Metasurfaces concludes with an incisive discussion of the likely future directions and research opportunities in the field. Readers will also benefit from the inclusion of: A thorough introduction to metamaterials, the concept of metasurfaces, and metasurface precursors An exploration of electromagnetic modeling and theory, including metasurfaces as zero-thickness sheets and bianisotropic susceptibility tensors A practical discussion of susceptibility synthesis, including four-parameters synthesis, more than four-parameters synthesis, and the addition of susceptibility components A concise treatment of scattered-field analysis, including approximate analytical methods, and finite-difference frequency-domain techniques Perfect for researchers in metamaterial sciences and engineers working with microwave, THz, and optical technologies, Electromagnetic Metasurfaces: Theory and Applications will also earn a place in the libraries of graduate and undergraduate students in physics and electrical engineering.
Analysis and Design of Transmitarray Antennas
Author: Ahmed H. Abdelrahman
Publisher: Morgan & Claypool Publishers
ISBN: 1627057064
Category : Technology & Engineering
Languages : en
Pages : 177
Book Description
In recent years, transmitarray antennas have attracted growing interest with many antenna researchers. Transmitarrays combines both optical and antenna array theory, leading to a low profile design with high gain, high radiation efficiency, and versatile radiation performance for many wireless communication systems. In this book, comprehensive analysis, new methodologies, and novel designs of transmitarray antennas are presented. Detailed analysis for the design of planar space-fed array antennas is presented. The basics of aperture field distribution and the analysis of the array elements are described. The radiation performances (directivity and gain) are discussed using array theory approach, and the impacts of element phase errors are demonstrated. The performance of transmitarray design using multilayer frequency selective surfaces (M-FSS) approach is carefully studied, and the transmission phase limit which are generally independent from the selection of a specific element shape is revealed. The maximum transmission phase range is determined based on the number of layers, substrate permittivity, and the separations between layers. In order to reduce the transmitarray design complexity and cost, three different methods have been investigated. As a result, one design is performed using quad-layer cross-slot elements with no dielectric material and another using triple-layer spiral dipole elements. Both designs were fabricated and tested at X-Band for deep space communications. Furthermore, the radiation pattern characteristics were studied under different feed polarization conditions and oblique angles of incident field from the feed. New design methodologies are proposed to improve the bandwidth of transmitarray antennas through the control of the transmission phase range of the elements. These design techniques are validated through the fabrication and testing of two quad-layer transmitarray antennas at Ku-band. A single-feed quad-beam transmitarray antenna with 50 degrees elevation separation between the beams is investigated, designed, fabricated, and tested at Ku-band. In summary, various challenges in the analysis and design of transmitarray antennas are addressed in this book. New methodologies to improve the bandwidth of transmitarray antennas have been demonstrated. Several prototypes have been fabricated and tested, demonstrating the desirable features and potential new applications of transmitarray antennas.
Publisher: Morgan & Claypool Publishers
ISBN: 1627057064
Category : Technology & Engineering
Languages : en
Pages : 177
Book Description
In recent years, transmitarray antennas have attracted growing interest with many antenna researchers. Transmitarrays combines both optical and antenna array theory, leading to a low profile design with high gain, high radiation efficiency, and versatile radiation performance for many wireless communication systems. In this book, comprehensive analysis, new methodologies, and novel designs of transmitarray antennas are presented. Detailed analysis for the design of planar space-fed array antennas is presented. The basics of aperture field distribution and the analysis of the array elements are described. The radiation performances (directivity and gain) are discussed using array theory approach, and the impacts of element phase errors are demonstrated. The performance of transmitarray design using multilayer frequency selective surfaces (M-FSS) approach is carefully studied, and the transmission phase limit which are generally independent from the selection of a specific element shape is revealed. The maximum transmission phase range is determined based on the number of layers, substrate permittivity, and the separations between layers. In order to reduce the transmitarray design complexity and cost, three different methods have been investigated. As a result, one design is performed using quad-layer cross-slot elements with no dielectric material and another using triple-layer spiral dipole elements. Both designs were fabricated and tested at X-Band for deep space communications. Furthermore, the radiation pattern characteristics were studied under different feed polarization conditions and oblique angles of incident field from the feed. New design methodologies are proposed to improve the bandwidth of transmitarray antennas through the control of the transmission phase range of the elements. These design techniques are validated through the fabrication and testing of two quad-layer transmitarray antennas at Ku-band. A single-feed quad-beam transmitarray antenna with 50 degrees elevation separation between the beams is investigated, designed, fabricated, and tested at Ku-band. In summary, various challenges in the analysis and design of transmitarray antennas are addressed in this book. New methodologies to improve the bandwidth of transmitarray antennas have been demonstrated. Several prototypes have been fabricated and tested, demonstrating the desirable features and potential new applications of transmitarray antennas.
Broadbanding Techniques for Radomes
Author: P. S. Mohammed Yazeen
Publisher: Springer Nature
ISBN: 9813341300
Category : Science
Languages : en
Pages : 95
Book Description
This SpringerBrief details various techniques employed for enhancing the transmission efficiency of radomes by modifying the radome wall configurations. These broadbanding techniques are based on inclusion of metallic wire-grids/meshes in the radomewalls, inclusion of metallic strip-gratings in the radome layers, inclusion of FSS based structures in between the radome layers and the use of inhomogeneous dielectric structures as radome wall. The volume provides detailed chapter-wise explanation of the design aspects and discusses the performance analysis of the modified radome wall configurations. It will be of interest to researchers, academicians and students working in the field of radomes.
Publisher: Springer Nature
ISBN: 9813341300
Category : Science
Languages : en
Pages : 95
Book Description
This SpringerBrief details various techniques employed for enhancing the transmission efficiency of radomes by modifying the radome wall configurations. These broadbanding techniques are based on inclusion of metallic wire-grids/meshes in the radomewalls, inclusion of metallic strip-gratings in the radome layers, inclusion of FSS based structures in between the radome layers and the use of inhomogeneous dielectric structures as radome wall. The volume provides detailed chapter-wise explanation of the design aspects and discusses the performance analysis of the modified radome wall configurations. It will be of interest to researchers, academicians and students working in the field of radomes.