Author: Willi Freeden
Publisher: Birkhäuser
ISBN: 3319571818
Category : Mathematics
Languages : en
Pages : 938
Book Description
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Handbook of Mathematical Geodesy
Author: Willi Freeden
Publisher: Birkhäuser
ISBN: 3319571818
Category : Mathematics
Languages : en
Pages : 938
Book Description
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Publisher: Birkhäuser
ISBN: 3319571818
Category : Mathematics
Languages : en
Pages : 938
Book Description
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Geometrical Geodesy
Author: Maarten Hooijberg
Publisher: Springer Science & Business Media
ISBN: 3540682252
Category : Science
Languages : en
Pages : 452
Book Description
Surveying a Century Ago As it was based on the principles of geometry and trigonometry, surveying may be may be looked upon as a branch of practical mathematics. Hence, it was necessary that land surveyors and hydrographers should have a fair general knowledge, not only of these subjects, but also of all the subjects comprised by the term mathemat ics. In addition, the knowledge of mathematics required in ordinary chain surveying and levelling was not very extensive but in geodetical work, the highest mathematical ability and great organising power were required for a proper conception and supervision of the operations (Threlfall, 1940). Only small area of a few hundred square kilometres can be accurately mapped and surveyed without a frame work, since no difficulty is encountered because of Earth-curvature. In the past, especially in hydrography due to the type of work, surveying was carried out on the principles of ordinary practice, but in a very rough man ner, rapidity of execution being of paramount importance, the permissible error was sometimes large. The relative positions of the main surface features were obtained by aid of portable instruments, such as sextants and lead lines, tide poles, and logships. Sketching, just like military surveying was often filling in the smaller detail. In contrary, survey works done by the national mapping agencies (NMAs) were of a higher-level, and comprised the delimitation of boundaries as well as topographical surveys.
Publisher: Springer Science & Business Media
ISBN: 3540682252
Category : Science
Languages : en
Pages : 452
Book Description
Surveying a Century Ago As it was based on the principles of geometry and trigonometry, surveying may be may be looked upon as a branch of practical mathematics. Hence, it was necessary that land surveyors and hydrographers should have a fair general knowledge, not only of these subjects, but also of all the subjects comprised by the term mathemat ics. In addition, the knowledge of mathematics required in ordinary chain surveying and levelling was not very extensive but in geodetical work, the highest mathematical ability and great organising power were required for a proper conception and supervision of the operations (Threlfall, 1940). Only small area of a few hundred square kilometres can be accurately mapped and surveyed without a frame work, since no difficulty is encountered because of Earth-curvature. In the past, especially in hydrography due to the type of work, surveying was carried out on the principles of ordinary practice, but in a very rough man ner, rapidity of execution being of paramount importance, the permissible error was sometimes large. The relative positions of the main surface features were obtained by aid of portable instruments, such as sextants and lead lines, tide poles, and logships. Sketching, just like military surveying was often filling in the smaller detail. In contrary, survey works done by the national mapping agencies (NMAs) were of a higher-level, and comprised the delimitation of boundaries as well as topographical surveys.
Mathematical Geodesy
Author: Martin Hotine
Publisher:
ISBN:
Category : Geodesy
Languages : en
Pages : 434
Book Description
Publisher:
ISBN:
Category : Geodesy
Languages : en
Pages : 434
Book Description
Wavelets in Geodesy and Geodynamics
Author: Wolfgang Keller
Publisher: Walter de Gruyter
ISBN: 3110198185
Category : Science
Languages : en
Pages : 290
Book Description
For many years, digital signal processing has been governed by the theory of Fourier transform and its numerical implementation. The main disadvantage of Fourier theory is the underlying assumption that the signals have time-wise or space-wise invariant statistical properties. In many applications the deviation from a stationary behavior is precisely the information to be extracted from the signals. Wavelets were developed to serve the purpose of analysing such instationary signals. The book gives an introduction to wavelet theory both in the continuous and the discrete case. After developing the theoretical fundament, typical examples of wavelet analysis in the Geosciences are presented. The book has developed from a graduate course held at The University of Calgary and is directed to graduate students who are interested in digital signal processing. The reader is assumed to have a mathematical background on the graduate level.
Publisher: Walter de Gruyter
ISBN: 3110198185
Category : Science
Languages : en
Pages : 290
Book Description
For many years, digital signal processing has been governed by the theory of Fourier transform and its numerical implementation. The main disadvantage of Fourier theory is the underlying assumption that the signals have time-wise or space-wise invariant statistical properties. In many applications the deviation from a stationary behavior is precisely the information to be extracted from the signals. Wavelets were developed to serve the purpose of analysing such instationary signals. The book gives an introduction to wavelet theory both in the continuous and the discrete case. After developing the theoretical fundament, typical examples of wavelet analysis in the Geosciences are presented. The book has developed from a graduate course held at The University of Calgary and is directed to graduate students who are interested in digital signal processing. The reader is assumed to have a mathematical background on the graduate level.
Handbook of Mathematical Geosciences
Author: B.S. Daya Sagar
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
IX Hotine-Marussi Symposium on Mathematical Geodesy
Author: Pavel Novák
Publisher: Springer Nature
ISBN: 303054267X
Category : Science
Languages : en
Pages : 242
Book Description
This volume gathers the proceedings of the IX Hotine-Marussi Symposium on Mathematical Geodesy, which was held from 18 to 22 June 2018 at the Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Italy. Since 2006, the Hotine-Marussi Symposia series has been produced under the auspices of the Inter-Commission Committee on Theory (ICCT) within the International Association of Geodesy (IAG). The ICCT has organized the last four Hotine-Marussi Symposia, held in Wuhan (2006) and Rome (2009, 2013 and 2018). The overall goal of the ICCT and Hotine-Marussi Symposia has always been to advance geodetic theory, as reflected in the 25 peer-reviewed research articles presented here. The IX Hotine-Marussi Symposium was divided into 10 topical sessions covering all aspects of geodetic theory including reference frames, gravity field modelling, adjustment theory, atmosphere, time series analysis and advanced numerical methods. In total 118 participants attended the Symposium and delivered 82 oral and 37 poster presentations. During a special session at the Accademia Nazionale deiLincei, the oldest scientific academy in the world, six invited speakers discussed interactions of geodesy with oceanography, glaciology, atmospheric research, mathematics, Earth science and seismology.
Publisher: Springer Nature
ISBN: 303054267X
Category : Science
Languages : en
Pages : 242
Book Description
This volume gathers the proceedings of the IX Hotine-Marussi Symposium on Mathematical Geodesy, which was held from 18 to 22 June 2018 at the Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Italy. Since 2006, the Hotine-Marussi Symposia series has been produced under the auspices of the Inter-Commission Committee on Theory (ICCT) within the International Association of Geodesy (IAG). The ICCT has organized the last four Hotine-Marussi Symposia, held in Wuhan (2006) and Rome (2009, 2013 and 2018). The overall goal of the ICCT and Hotine-Marussi Symposia has always been to advance geodetic theory, as reflected in the 25 peer-reviewed research articles presented here. The IX Hotine-Marussi Symposium was divided into 10 topical sessions covering all aspects of geodetic theory including reference frames, gravity field modelling, adjustment theory, atmosphere, time series analysis and advanced numerical methods. In total 118 participants attended the Symposium and delivered 82 oral and 37 poster presentations. During a special session at the Accademia Nazionale deiLincei, the oldest scientific academy in the world, six invited speakers discussed interactions of geodesy with oceanography, glaciology, atmospheric research, mathematics, Earth science and seismology.
Spherical Functions of Mathematical Geosciences
Author: Willi Freeden
Publisher: Springer Nature
ISBN: 3662656922
Category : Earth sciences
Languages : en
Pages : 729
Book Description
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
Publisher: Springer Nature
ISBN: 3662656922
Category : Earth sciences
Languages : en
Pages : 729
Book Description
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
Map of the World
Author: Martin Vermeer
Publisher: CRC Press
ISBN: 0429556500
Category : Mathematics
Languages : en
Pages : 291
Book Description
Carl Friedrich Gauss, the "foremost of mathematicians," was a land surveyor. Measuring and calculating geodetic networks on the curved Earth was the inspiration for some of his greatest mathematical discoveries. This is just one example of how mathematics and geodesy, the science and art of measuring and mapping our world, have evolved together throughout history. This text is for students and professionals in geodesy, land surveying, and geospatial science who need to understand the mathematics of describing the Earth and capturing her in maps and geospatial data: the discipline known as mathematical geodesy. Map of the World: An Introduction to Mathematical Geodesy aims to provide an accessible introduction to this area, presenting and developing the mathematics relating to maps, mapping, and the production of geospatial data. Described are the theory and its fundamental concepts, its application for processing, analyzing, transforming, and projecting geospatial data, and how these are used in producing charts and atlases. Also touched upon are the multitude of cross-overs into other sciences sharing in the adventure of discovering what our world really looks like. FEATURES • Written in a fluid and accessible style, replete with exercises; adaptable for courses on different levels. • Suitable for students and professionals in the mapping sciences, but also for lovers of maps and map making.
Publisher: CRC Press
ISBN: 0429556500
Category : Mathematics
Languages : en
Pages : 291
Book Description
Carl Friedrich Gauss, the "foremost of mathematicians," was a land surveyor. Measuring and calculating geodetic networks on the curved Earth was the inspiration for some of his greatest mathematical discoveries. This is just one example of how mathematics and geodesy, the science and art of measuring and mapping our world, have evolved together throughout history. This text is for students and professionals in geodesy, land surveying, and geospatial science who need to understand the mathematics of describing the Earth and capturing her in maps and geospatial data: the discipline known as mathematical geodesy. Map of the World: An Introduction to Mathematical Geodesy aims to provide an accessible introduction to this area, presenting and developing the mathematics relating to maps, mapping, and the production of geospatial data. Described are the theory and its fundamental concepts, its application for processing, analyzing, transforming, and projecting geospatial data, and how these are used in producing charts and atlases. Also touched upon are the multitude of cross-overs into other sciences sharing in the adventure of discovering what our world really looks like. FEATURES • Written in a fluid and accessible style, replete with exercises; adaptable for courses on different levels. • Suitable for students and professionals in the mapping sciences, but also for lovers of maps and map making.
Recovery Methodologies: Regularization and Sampling
Author: Willi Freeden
Publisher: American Mathematical Society
ISBN: 1470473453
Category : Mathematics
Languages : en
Pages : 505
Book Description
The goal of this book is to introduce the reader to methodologies in recovery problems for objects, such as functions and signals, from partial or indirect information. The recovery of objects from a set of data demands key solvers of inverse and sampling problems. Until recently, connections between the mathematical areas of inverse problems and sampling were rather tenuous. However, advances in several areas of mathematical research have revealed deep common threads between them, which proves that there is a serious need for a unifying description of the underlying mathematical ideas and concepts. Freeden and Nashed present an integrated approach to resolution methodologies from the perspective of both these areas. Researchers in sampling theory will benefit from learning about inverse problems and regularization methods, while specialists in inverse problems will gain a better understanding of the point of view of sampling concepts. This book requires some basic knowledge of functional analysis, Fourier theory, geometric number theory, constructive approximation, and special function theory. By avoiding extreme technicalities and elaborate proof techniques, it is an accessible resource for students and researchers not only from applied mathematics, but also from all branches of engineering and science.
Publisher: American Mathematical Society
ISBN: 1470473453
Category : Mathematics
Languages : en
Pages : 505
Book Description
The goal of this book is to introduce the reader to methodologies in recovery problems for objects, such as functions and signals, from partial or indirect information. The recovery of objects from a set of data demands key solvers of inverse and sampling problems. Until recently, connections between the mathematical areas of inverse problems and sampling were rather tenuous. However, advances in several areas of mathematical research have revealed deep common threads between them, which proves that there is a serious need for a unifying description of the underlying mathematical ideas and concepts. Freeden and Nashed present an integrated approach to resolution methodologies from the perspective of both these areas. Researchers in sampling theory will benefit from learning about inverse problems and regularization methods, while specialists in inverse problems will gain a better understanding of the point of view of sampling concepts. This book requires some basic knowledge of functional analysis, Fourier theory, geometric number theory, constructive approximation, and special function theory. By avoiding extreme technicalities and elaborate proof techniques, it is an accessible resource for students and researchers not only from applied mathematics, but also from all branches of engineering and science.
Handbook of Geomathematics
Author: Willi Freeden
Publisher: Springer Science & Business Media
ISBN: 364201545X
Category : Mathematics
Languages : en
Pages : 1371
Book Description
During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.
Publisher: Springer Science & Business Media
ISBN: 364201545X
Category : Mathematics
Languages : en
Pages : 1371
Book Description
During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.