Handbook of Geometric Topology

Handbook of Geometric Topology PDF Author: R.B. Sher
Publisher: Elsevier
ISBN: 0080532853
Category : Mathematics
Languages : en
Pages : 1145

Get Book Here

Book Description
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.

Handbook of Geometric Topology

Handbook of Geometric Topology PDF Author: R.B. Sher
Publisher: Elsevier
ISBN: 0080532853
Category : Mathematics
Languages : en
Pages : 1145

Get Book Here

Book Description
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.

Handbook of Geometry and Topology of Singularities II

Handbook of Geometry and Topology of Singularities II PDF Author: José Luis Cisneros-Molina
Publisher: Springer Nature
ISBN: 3030780244
Category : Mathematics
Languages : en
Pages : 581

Get Book Here

Book Description
This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

Topology and Geometry

Topology and Geometry PDF Author: Glen E. Bredon
Publisher: Springer Science & Business Media
ISBN: 0387979263
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

Geometry and Topology

Geometry and Topology PDF Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521848893
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
Geometry aims to describe the world around us. It is central to many branches of mathematics and physics, and offers a whole range of views on the universe. This is an introduction to the ideas of geometry and includes generous helpings of simple explanations and examples. The book is based on many years teaching experience so is thoroughly class-tested, and as prerequisites are minimal, it is suited to newcomers to the subject. There are plenty of illustrations; chapters end with a collection of exercises, and solutions are available for teachers.

Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry PDF Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354

Get Book Here

Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Handbook of Homotopy Theory

Handbook of Homotopy Theory PDF Author: Haynes Miller
Publisher: CRC Press
ISBN: 1351251600
Category : Mathematics
Languages : en
Pages : 1142

Get Book Here

Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Geometric Topology: Localization, Periodicity and Galois Symmetry

Geometric Topology: Localization, Periodicity and Galois Symmetry PDF Author: Dennis P. Sullivan
Publisher: Springer
ISBN: 9789048103508
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
The seminal ‘MIT notes’ of Dennis Sullivan were issued in June 1970 and were widely circulated at the time. The notes had a - jor in?uence on the development of both algebraic and geometric topology, pioneering the localization and completion of spaces in homotopy theory, including p-local, pro?nite and rational homotopy theory, le- ing to the solution of the Adams conjecture on the relationship between vector bundles and spherical ?brations, the formulation of the ‘Sullivan conjecture’ on the contractibility of the space of maps from the classifying space of a ?nite group to a ?nite dimensional CW complex, theactionoftheGalois groupoverQofthealgebraicclosureQof Q on smooth manifold structures in pro?nite homotopy theory, the K-theory orientation ofPL manifolds and bundles. Some of this material has been already published by Sullivan him- 1 self: in an article in the Proceedings of the 1970 Nice ICM, and in the 1974 Annals of Mathematics papers Genetics of homotopy theory and the Adams conjecture and The transversality character- 2 istic class and linking cycles in surgery theory . Many of the ideas originating in the notes have been the starting point of subsequent 1 reprinted at the end of this volume 2 joint with John Morgan vii viii 3 developments . However, the text itself retains a unique ?avour of its time, and of the range of Sullivan’s ideas.

Handbook of Discrete and Computational Geometry, Second Edition

Handbook of Discrete and Computational Geometry, Second Edition PDF Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1420035312
Category : Mathematics
Languages : en
Pages : 1557

Get Book Here

Book Description
While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies

An Introduction to Contact Topology

An Introduction to Contact Topology PDF Author: Hansjörg Geiges
Publisher: Cambridge University Press
ISBN: 1139467956
Category : Mathematics
Languages : en
Pages : 8

Get Book Here

Book Description
This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.