Handbook of Advanced Magnetic Materials

Handbook of Advanced Magnetic Materials PDF Author: Yi Liu
Publisher: Springer Science & Business Media
ISBN: 1402079842
Category : Science
Languages : en
Pages : 1844

Get Book Here

Book Description
In December 2002, the world's first commercial magnetic levitation super-train went into operation in Shanghai. The train is held just above the rails by magnetic levitation (maglev) and can travel at a speed of 400 km/hr, completing the 30km journey from the city to the airport in minutes. Now consumers are enjoying 50 GB hard drives compared to 0.5 GB hard drives ten years ago. Achievements in magnetic materials research have made dreams of a few decades ago reality. The objective of the four volume reference, Handbook of Advanced Magnetic Materials, is to provide a comprehensive review of recent progress in magnetic materials research. Each chapter will have an introduction to give a clear definition of basic and important concepts of the topic. The details of the topic are then elucidated theoretically and experimentally. New ideas for further advancement are then discussed. Sufficient references are also included for those who wish to read the original work. In the last decade, one of the most significant thrust areas of materials research has been nanostructured magnetic materials. There are several critical sizes that control the behavior of a magnetic material, and size effects become especially critical when dimensions approach a few nanometers, where quantum phenomena appear. The first volume of the book, Nanostructured Advanced Magnetic Materials, has therefore been devoted to the recent development of nanostructured magnetic materials, emphasizing size effects. Our understanding of magnetism has advanced with the establishment of the theory of atomic magnetic moments and itinerant magnetism. Simulation is a powerful tool for exploration and explanation of properties of various magnetic materials. Simulation also provides insight for further development of new materials. Naturally, before any simulation can be started, a model must be constructed. This requires that the material be well characterized. Therefore the second volume, Characterization and Simulation provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. After an introduction, each section gives a detailed description of the method and the following sections provide examples and results of the method. Finally further development of the method will be discussed. The success of each type of magnetic material depends on its properties and cost which are directly related to its fabrication process. Processing of a material can be critical for development of artificial materials such as multilayer films, clusters, etc. Moreover, cost-effective processing usually determines whether a material can be commercialized. In recent years processing of materials has continuously evolved from improvement of traditional methods to more sophisticated and novel methods. The objective of the third volume, Processing of Advanced Magnetic Materials, is to provide a comprehensive review of recent developments in processing of advanced magnetic materials. Each chapter will have an introduction and a section to provide a detailed description of the processing method. The following sections give detailed descriptions of the processing, properties and applications of the relevant materials. Finally the potential and limitation of the processing method will be discussed. The properties of a magnetic material can be characterized by intrinsic properties such as anisotropy, saturation magnetization and extrinsic properties such as coercivity. The properties of a magnetic material can be affected by its chemical composition and processing route. With the continuous search for new materials and invention of new processing routes, magnetic properties of materials cover a wide spectrum of soft magnetic materials, hard magnetic materials, recording materials, sensor materials and others. The objective of the fourth volume, Properties and Applications of Advanced Magnetic Materials, is to provide a comprehensive review of recent development of various magnetic materials and their applications. Each chapter will have an introduction of the materials and the principles of their applications. The following sections give a detailed description of the processing, properties and applications. Finally the potential and limitation of the materials will be discussed.

Handbook of Advanced Magnetic Materials

Handbook of Advanced Magnetic Materials PDF Author: Yi Liu
Publisher: Springer Science & Business Media
ISBN: 1402079842
Category : Science
Languages : en
Pages : 1844

Get Book Here

Book Description
In December 2002, the world's first commercial magnetic levitation super-train went into operation in Shanghai. The train is held just above the rails by magnetic levitation (maglev) and can travel at a speed of 400 km/hr, completing the 30km journey from the city to the airport in minutes. Now consumers are enjoying 50 GB hard drives compared to 0.5 GB hard drives ten years ago. Achievements in magnetic materials research have made dreams of a few decades ago reality. The objective of the four volume reference, Handbook of Advanced Magnetic Materials, is to provide a comprehensive review of recent progress in magnetic materials research. Each chapter will have an introduction to give a clear definition of basic and important concepts of the topic. The details of the topic are then elucidated theoretically and experimentally. New ideas for further advancement are then discussed. Sufficient references are also included for those who wish to read the original work. In the last decade, one of the most significant thrust areas of materials research has been nanostructured magnetic materials. There are several critical sizes that control the behavior of a magnetic material, and size effects become especially critical when dimensions approach a few nanometers, where quantum phenomena appear. The first volume of the book, Nanostructured Advanced Magnetic Materials, has therefore been devoted to the recent development of nanostructured magnetic materials, emphasizing size effects. Our understanding of magnetism has advanced with the establishment of the theory of atomic magnetic moments and itinerant magnetism. Simulation is a powerful tool for exploration and explanation of properties of various magnetic materials. Simulation also provides insight for further development of new materials. Naturally, before any simulation can be started, a model must be constructed. This requires that the material be well characterized. Therefore the second volume, Characterization and Simulation provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. After an introduction, each section gives a detailed description of the method and the following sections provide examples and results of the method. Finally further development of the method will be discussed. The success of each type of magnetic material depends on its properties and cost which are directly related to its fabrication process. Processing of a material can be critical for development of artificial materials such as multilayer films, clusters, etc. Moreover, cost-effective processing usually determines whether a material can be commercialized. In recent years processing of materials has continuously evolved from improvement of traditional methods to more sophisticated and novel methods. The objective of the third volume, Processing of Advanced Magnetic Materials, is to provide a comprehensive review of recent developments in processing of advanced magnetic materials. Each chapter will have an introduction and a section to provide a detailed description of the processing method. The following sections give detailed descriptions of the processing, properties and applications of the relevant materials. Finally the potential and limitation of the processing method will be discussed. The properties of a magnetic material can be characterized by intrinsic properties such as anisotropy, saturation magnetization and extrinsic properties such as coercivity. The properties of a magnetic material can be affected by its chemical composition and processing route. With the continuous search for new materials and invention of new processing routes, magnetic properties of materials cover a wide spectrum of soft magnetic materials, hard magnetic materials, recording materials, sensor materials and others. The objective of the fourth volume, Properties and Applications of Advanced Magnetic Materials, is to provide a comprehensive review of recent development of various magnetic materials and their applications. Each chapter will have an introduction of the materials and the principles of their applications. The following sections give a detailed description of the processing, properties and applications. Finally the potential and limitation of the materials will be discussed.

先进磁性材料的纳米尺寸效应(21世纪科技前沿丛书先进磁性材料手册第1卷)

先进磁性材料的纳米尺寸效应(21世纪科技前沿丛书先进磁性材料手册第1卷) PDF Author: David J. Sellmyer
Publisher: 清华大学出版社有限公司
ISBN: 9787302080862
Category : Magnetic materials
Languages : en
Pages : 408

Get Book Here

Book Description
本书共分四卷,第一卷集中论述一个具体的研究领域。每一章首先对该章的基本概念和重要观念进行阐述,然后从实验和理论方面进行详细的说明,最后介绍该领域的发展前景以及新的思想。

先进磁性材料手册第3卷:先进磁性材料的制作和加工

先进磁性材料手册第3卷:先进磁性材料的制作和加工 PDF Author: David J. Sellmyer
Publisher: 清华大学出版社有限公司
ISBN: 9787302086062
Category : Magnetic materials
Languages : en
Pages : 384

Get Book Here

Book Description
本书共分四卷,每一卷集中论述一个具体的研究领域。每一章首先对该章的基本概念和重要观念进行阐述,然后从实验和理论方面进行详细说明,最后介绍该领域的发展前景以及新的思想。本卷对近年来各种磁性材料的制作加工原理和性能的相关性进行分析总结并瞻望未来。

纳米技术中的显微学手册

纳米技术中的显微学手册 PDF Author:
Publisher: 清华大学出版社有限公司
ISBN: 9787302097587
Category :
Languages : en
Pages : 440

Get Book Here

Book Description
本书叙述了电子显微学的内容,共有12个专题。力图使读者对所叙述的方法有一个概念上的理解,而不是只停留在对理论的堆砌上。

Handbook of Advanced Magnetic Materials

Handbook of Advanced Magnetic Materials PDF Author: David J. Sellmyer
Publisher: 清华大学出版社有限公司
ISBN: 9787302087014
Category : Magnetic materials
Languages : en
Pages : 640

Get Book Here

Book Description


Processing and Fabrication of Advanced Materials XIII

Processing and Fabrication of Advanced Materials XIII PDF Author:
Publisher: World Scientific
ISBN: 9810529996
Category : Ceramic materials
Languages : en
Pages : 548

Get Book Here

Book Description


Handbook of Magnetic Materials

Handbook of Magnetic Materials PDF Author: K.H.J. Buschow
Publisher: Elsevier
ISBN: 0080553869
Category : Science
Languages : en
Pages : 605

Get Book Here

Book Description
Volume 17 of the Handbook on the Properties of Magnetic Materials, as the preceding volumes, has a dual purpose. As a textbook it is intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. To this dual purpose, Volume 17 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and material science. It provides the readership with novel trends and achievements in magnetism.*composed of topical review articles written by leading authorities *intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism *as a work of reference it is intended for scientists active in magnetism research *provide the readership with novel trends and achievements in magnetism

Handbook of Advanced Magnetic Materials

Handbook of Advanced Magnetic Materials PDF Author: Yi Liu
Publisher: Springer
ISBN: 9781402079832
Category : Science
Languages : en
Pages : 1794

Get Book Here

Book Description
In December 2002, the world's first commercial magnetic levitation super-train went into operation in Shanghai. The train is held just above the rails by magnetic levitation (maglev) and can travel at a speed of 400 km/hr, completing the 30km journey from the city to the airport in minutes. Now consumers are enjoying 50 GB hard drives compared to 0.5 GB hard drives ten years ago. Achievements in magnetic materials research have made dreams of a few decades ago reality. The objective of the four volume reference, Handbook of Advanced Magnetic Materials, is to provide a comprehensive review of recent progress in magnetic materials research. Each chapter will have an introduction to give a clear definition of basic and important concepts of the topic. The details of the topic are then elucidated theoretically and experimentally. New ideas for further advancement are then discussed. Sufficient references are also included for those who wish to read the original work. In the last decade, one of the most significant thrust areas of materials research has been nanostructured magnetic materials. There are several critical sizes that control the behavior of a magnetic material, and size effects become especially critical when dimensions approach a few nanometers, where quantum phenomena appear. The first volume of the book, Nanostructured Advanced Magnetic Materials, has therefore been devoted to the recent development of nanostructured magnetic materials, emphasizing size effects. Our understanding of magnetism has advanced with the establishment of the theory of atomic magnetic moments and itinerant magnetism. Simulation is a powerful tool for exploration and explanation of properties of various magnetic materials. Simulation also provides insight for further development of new materials. Naturally, before any simulation can be started, a model must be constructed. This requires that the material be well characterized. Therefore the second volume, Characterization and Simulation provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. After an introduction, each section gives a detailed description of the method and the following sections provide examples and results of the method. Finally further development of the method will be discussed. The success of each type of magnetic material depends on its properties and cost which are directly related to its fabrication process. Processing of a material can be critical for development of artificial materials such as multilayer films, clusters, etc. Moreover, cost-effective processing usually determines whether a material can be commercialized. In recent years processing of materials has continuously evolved from improvement of traditional methods to more sophisticated and novel methods. The objective of the third volume, Processing of Advanced Magnetic Materials, is to provide a comprehensive review of recent developments in processing of advanced magnetic materials. Each chapter will have an introduction and a section to provide a detailed description of the processing method. The following sections give detailed descriptions of the processing, properties and applications of the relevant materials. Finally the potential and limitation of the processing method will be discussed. The properties of a magnetic material can be characterized by intrinsic properties such as anisotropy, saturation magnetization and extrinsic properties such as coercivity. The properties of a magnetic material can be affected by its chemical composition and processing route. With the continuous search for new materials and invention of new processing routes, magnetic properties of materials cover a wide spectrum of soft magnetic materials, hard magnetic materials, recording materials, sensor materials and others. The objective of the fourth volume, Properties and Applications of Advanced Magnetic Materials, is to provide a comprehensive review of recent development of various magnetic materials and their applications. Each chapter will have an introduction of the materials and the principles of their applications. The following sections give a detailed description of the processing, properties and applications. Finally the potential and limitation of the materials will be discussed.

Handbook of Advanced Plasma Processing Techniques

Handbook of Advanced Plasma Processing Techniques PDF Author: R.J. Shul
Publisher: Springer Science & Business Media
ISBN: 3642569897
Category : Technology & Engineering
Languages : en
Pages : 664

Get Book Here

Book Description
Pattern transfer by dry etching and plasma-enhanced chemical vapor de position are two of the cornerstone techniques for modern integrated cir cuit fabrication. The success of these methods has also sparked interest in their application to other techniques, such as surface-micromachined sen sors, read/write heads for data storage and magnetic random access memory (MRAM). The extremely complex chemistry and physics of plasmas and their interactions with the exposed surfaces of semiconductors and other materi als is often overlooked at the manufacturing stage. In this case, the process is optimized by an informed "trial-and-error" approach which relies heavily on design-of-experiment techniques and the intuition of the process engineer. The need for regular cleaning of plasma reactors to remove built-up reaction or precursor gas products adds an extra degree of complexity because the interaction of the reactive species in the plasma with the reactor walls can also have a strong effect on the number of these species available for etching or deposition. Since the microelectronics industry depends on having high process yields at each step of the fabrication process, it is imperative that a full understanding of plasma etching and deposition techniques be achieved.

Advanced Materials and Manufacturing Techniques for Biomedical Applications

Advanced Materials and Manufacturing Techniques for Biomedical Applications PDF Author: Arbind Prasad
Publisher: John Wiley & Sons
ISBN: 1394166966
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
ADVANCED MATERIALS and MANUFACTURING TECHNIQUES for BIOMEDICAL APPLICATIONS The book provides essential knowledge for the synthesis of biomedical products, development, nanomaterial properties, fabrication processes, and design techniques for different applications, as well as process design and optimization. In origin, biomaterials can come from nature or be synthesized in the laboratory with a variety of approaches that use metals, polymers, ceramic, or composite materials. They are often used or adapted for various biomedical applications. Biomaterials are commonly used in scaffolds, orthopedic, wound healing, fracture fixation, surgical sutures, artificial organ developments, pins and screws to stabilize fractures, surgical mesh, breast implants, artificial ligaments and tendons, and drug delivery systems. The sixteen chapters in Advanced Materials and Manufacturing Techniques in Biomedical Applications cover the synthesis, processing, design, manufacturing, and characterization of advanced materials; self-healing, bioinspired, nature-resourced, nanobiomaterials for biomedical applications; and manufacturing techniques such as rapid prototyping, additive manufacturing, etc. Audience The book is for engineers, technologists, and researchers working in the area of biomedical engineering and manufacturing techniques. It is also appropriate for upper-level undergraduate and graduate students.