Author: Antonio Giorgilli
Publisher: Cambridge University Press
ISBN: 100917486X
Category : Science
Languages : en
Pages : 474
Book Description
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems
Author: Antonio Giorgilli
Publisher: Cambridge University Press
ISBN: 100917486X
Category : Science
Languages : en
Pages : 474
Book Description
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Publisher: Cambridge University Press
ISBN: 100917486X
Category : Science
Languages : en
Pages : 474
Book Description
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Author: Kenneth R. Meyer
Publisher: Springer
ISBN: 3319536915
Category : Mathematics
Languages : en
Pages : 389
Book Description
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Publisher: Springer
ISBN: 3319536915
Category : Mathematics
Languages : en
Pages : 389
Book Description
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Hamiltonian Dynamical Systems and Applications
Author: Walter Craig
Publisher: Springer Science & Business Media
ISBN: 1402069642
Category : Mathematics
Languages : en
Pages : 450
Book Description
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 1402069642
Category : Mathematics
Languages : en
Pages : 450
Book Description
This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.
Multi-Hamiltonian Theory of Dynamical Systems
Author: Maciej Blaszak
Publisher: Springer Science & Business Media
ISBN: 364258893X
Category : Science
Languages : en
Pages : 355
Book Description
This book offers a modern introduction to the Hamiltonian theory of dynamical systems, presenting a unified treatment of all types of dynamical systems, i.e., finite, lattice, and field. Particular attention is paid to nonlinear systems that have more than one Hamiltonian formulation in a single coordinate system. As this property is closely related to integrability, this book presents an algebraic theory of integrable.
Publisher: Springer Science & Business Media
ISBN: 364258893X
Category : Science
Languages : en
Pages : 355
Book Description
This book offers a modern introduction to the Hamiltonian theory of dynamical systems, presenting a unified treatment of all types of dynamical systems, i.e., finite, lattice, and field. Particular attention is paid to nonlinear systems that have more than one Hamiltonian formulation in a single coordinate system. As this property is closely related to integrability, this book presents an algebraic theory of integrable.
Bifurcations in Hamiltonian Systems
Author: Henk Broer
Publisher: Springer
ISBN: 354036398X
Category : Mathematics
Languages : en
Pages : 178
Book Description
The authors consider applications of singularity theory and computer algebra to bifurcations of Hamiltonian dynamical systems. They restrict themselves to the case were the following simplification is possible. Near the equilibrium or (quasi-) periodic solution under consideration the linear part allows approximation by a normalized Hamiltonian system with a torus symmetry. It is assumed that reduction by this symmetry leads to a system with one degree of freedom. The volume focuses on two such reduction methods, the planar reduction (or polar coordinates) method and the reduction by the energy momentum mapping. The one-degree-of-freedom system then is tackled by singularity theory, where computer algebra, in particular, Gröbner basis techniques, are applied. The readership addressed consists of advanced graduate students and researchers in dynamical systems.
Publisher: Springer
ISBN: 354036398X
Category : Mathematics
Languages : en
Pages : 178
Book Description
The authors consider applications of singularity theory and computer algebra to bifurcations of Hamiltonian dynamical systems. They restrict themselves to the case were the following simplification is possible. Near the equilibrium or (quasi-) periodic solution under consideration the linear part allows approximation by a normalized Hamiltonian system with a torus symmetry. It is assumed that reduction by this symmetry leads to a system with one degree of freedom. The volume focuses on two such reduction methods, the planar reduction (or polar coordinates) method and the reduction by the energy momentum mapping. The one-degree-of-freedom system then is tackled by singularity theory, where computer algebra, in particular, Gröbner basis techniques, are applied. The readership addressed consists of advanced graduate students and researchers in dynamical systems.
Metamorphoses of Hamiltonian Systems with Symmetries
Author: Konstantinos Efstathiou
Publisher: Springer
ISBN: 3540315500
Category : Science
Languages : en
Pages : 155
Book Description
Modern notions and important tools of classical mechanics are used in the study of concrete examples that model physically significant molecular and atomic systems. The parametric nature of these examples leads naturally to the study of the major qualitative changes of such systems (metamorphoses) as the parameters are varied. The symmetries of these systems, discrete or continuous, exact or approximate, are used to simplify the problem through a number of mathematical tools and techniques like normalization and reduction. The book moves gradually from finding relative equilibria using symmetry, to the Hamiltonian Hopf bifurcation and its relation to monodromy and, finally, to generalizations of monodromy.
Publisher: Springer
ISBN: 3540315500
Category : Science
Languages : en
Pages : 155
Book Description
Modern notions and important tools of classical mechanics are used in the study of concrete examples that model physically significant molecular and atomic systems. The parametric nature of these examples leads naturally to the study of the major qualitative changes of such systems (metamorphoses) as the parameters are varied. The symmetries of these systems, discrete or continuous, exact or approximate, are used to simplify the problem through a number of mathematical tools and techniques like normalization and reduction. The book moves gradually from finding relative equilibria using symmetry, to the Hamiltonian Hopf bifurcation and its relation to monodromy and, finally, to generalizations of monodromy.
The Hamiltonian Approach to Dynamic Economics
Author: David Cass
Publisher: Academic Press
ISBN: 1483266850
Category : Business & Economics
Languages : en
Pages : 212
Book Description
The Hamiltonian Approach to Dynamic Economics focuses on the application of the Hamiltonian approach to dynamic economics and attempts to provide some unification of the theory of heterogeneous capital. Emphasis is placed on the stability of long-run steady-state equilibrium in models of heterogeneous capital accumulation. Generalizations of the Samuelson-Scheinkman approach are also given. Moreover, conditions are sought on the geometry of the Hamiltonian function (that is, on static technology) that suffice to preserve under (not necessarily small) perturbation the basic properties of the Hamiltonian dynamical system. Comprised of eight essays, this book begins with an introduction to Hamiltonian dynamics in economics, followed by a discussion on optimal steady states of n-sector growth models when utility is discounted. Optimal growth and decentralized or descriptive growth models in both continuous and discrete time are treated as applications of Hamiltonian dynamics. Theproblem of optimal growth with zero discounting is considered, with emphasis on a steepness condition on the Hamiltonian function. The general problem of decentralized growth with instantaneously adjusted expectations about price changes is also analyzed, along with the global asymptotic stability of optimal control systems with applications to the theory of economic growth. This monograph will be of value to mathematicians and economists.
Publisher: Academic Press
ISBN: 1483266850
Category : Business & Economics
Languages : en
Pages : 212
Book Description
The Hamiltonian Approach to Dynamic Economics focuses on the application of the Hamiltonian approach to dynamic economics and attempts to provide some unification of the theory of heterogeneous capital. Emphasis is placed on the stability of long-run steady-state equilibrium in models of heterogeneous capital accumulation. Generalizations of the Samuelson-Scheinkman approach are also given. Moreover, conditions are sought on the geometry of the Hamiltonian function (that is, on static technology) that suffice to preserve under (not necessarily small) perturbation the basic properties of the Hamiltonian dynamical system. Comprised of eight essays, this book begins with an introduction to Hamiltonian dynamics in economics, followed by a discussion on optimal steady states of n-sector growth models when utility is discounted. Optimal growth and decentralized or descriptive growth models in both continuous and discrete time are treated as applications of Hamiltonian dynamics. Theproblem of optimal growth with zero discounting is considered, with emphasis on a steepness condition on the Hamiltonian function. The general problem of decentralized growth with instantaneously adjusted expectations about price changes is also analyzed, along with the global asymptotic stability of optimal control systems with applications to the theory of economic growth. This monograph will be of value to mathematicians and economists.
Complex Hamiltonian Dynamics
Author: Tassos Bountis
Publisher: Springer Science & Business Media
ISBN: 3642273041
Category : Language Arts & Disciplines
Languages : en
Pages : 277
Book Description
This book explores modern developments in Hamiltonian dynamical systems, focusing on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. Includes end-of-chapter exercises and challenging problems.
Publisher: Springer Science & Business Media
ISBN: 3642273041
Category : Language Arts & Disciplines
Languages : en
Pages : 277
Book Description
This book explores modern developments in Hamiltonian dynamical systems, focusing on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. Includes end-of-chapter exercises and challenging problems.
Construction of Mappings for Hamiltonian Systems and Their Applications
Author: Sadrilla S. Abdullaev
Publisher: Springer
ISBN: 3540334173
Category : Science
Languages : en
Pages : 384
Book Description
Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.
Publisher: Springer
ISBN: 3540334173
Category : Science
Languages : en
Pages : 384
Book Description
Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.
Differential Galois Theory and Non-Integrability of Hamiltonian Systems
Author: Juan J. Morales Ruiz
Publisher: Birkhäuser
ISBN: 3034887183
Category : Mathematics
Languages : en
Pages : 177
Book Description
This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)
Publisher: Birkhäuser
ISBN: 3034887183
Category : Mathematics
Languages : en
Pages : 177
Book Description
This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc. The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed. - - - The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography. (Mathematical Reviews) For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics. (Zentralblatt MATH)