2016GUIDELINES FOR INVESTIGATING GEOLOGIC HAZARDS AND PREPARING ENGINEERING-GEOLOGY REPORTS, WITH A SUGGESTED APPROACH TO GEOLOGIC-HAZARD ORDINANCES IN UTAH

2016GUIDELINES FOR INVESTIGATING GEOLOGIC HAZARDS AND PREPARING ENGINEERING-GEOLOGY REPORTS, WITH A SUGGESTED APPROACH TO GEOLOGIC-HAZARD ORDINANCES IN UTAH PDF Author: Steve D. Bowman
Publisher: Utah Geological Survey
ISBN: 1557919291
Category : Science
Languages : en
Pages : 217

Get Book Here

Book Description
The purpose of these guidelines for investigating geologic hazards and preparing engineering-geology reports, is to provide recommendations for appropriate, minimum investigative techniques, standards, and report content to ensure adequate geologic site characterization and geologic-hazard investigations to protect public safety and facilitate risk reduction. Such investigations provide important information on site geologic conditions that may affect or be affected by development, as well as the type and severity of geologic hazards at a site, and recommend solutions to mitigate the effects and the cost of the hazards, both at the time of construction and over the life of the development. The accompanying suggested approach to geologic-hazard ordinances and school-site investigation guidelines are intended as an aid for land-use planning and regulation by local Utah jurisdictions and school districts, respectively. Geologic hazards that are not accounted for in project planning and design often result in additional unforeseen construction and/or future maintenance costs, and possible injury or death.

2016GUIDELINES FOR INVESTIGATING GEOLOGIC HAZARDS AND PREPARING ENGINEERING-GEOLOGY REPORTS, WITH A SUGGESTED APPROACH TO GEOLOGIC-HAZARD ORDINANCES IN UTAH

2016GUIDELINES FOR INVESTIGATING GEOLOGIC HAZARDS AND PREPARING ENGINEERING-GEOLOGY REPORTS, WITH A SUGGESTED APPROACH TO GEOLOGIC-HAZARD ORDINANCES IN UTAH PDF Author: Steve D. Bowman
Publisher: Utah Geological Survey
ISBN: 1557919291
Category : Science
Languages : en
Pages : 217

Get Book Here

Book Description
The purpose of these guidelines for investigating geologic hazards and preparing engineering-geology reports, is to provide recommendations for appropriate, minimum investigative techniques, standards, and report content to ensure adequate geologic site characterization and geologic-hazard investigations to protect public safety and facilitate risk reduction. Such investigations provide important information on site geologic conditions that may affect or be affected by development, as well as the type and severity of geologic hazards at a site, and recommend solutions to mitigate the effects and the cost of the hazards, both at the time of construction and over the life of the development. The accompanying suggested approach to geologic-hazard ordinances and school-site investigation guidelines are intended as an aid for land-use planning and regulation by local Utah jurisdictions and school districts, respectively. Geologic hazards that are not accounted for in project planning and design often result in additional unforeseen construction and/or future maintenance costs, and possible injury or death.

Guidelines for the Geologic Evaluation of Debris-flow Hazards on Alluvial Fans in Utah

Guidelines for the Geologic Evaluation of Debris-flow Hazards on Alluvial Fans in Utah PDF Author: Richard E. Giraud
Publisher: Utah Geological Survey
ISBN: 1557917299
Category : Science
Languages : en
Pages : 21

Get Book Here

Book Description
The Utah Geological Survey (UGS) developed these guidelines to help geologists evaluate debris-flow hazards on alluvial fans to ensure safe development. Debris-flow hazard evaluations are particularly important because alluvial fans are the primary sites of debris-flow deposition and are also favored sites for development. The purpose of a debris-flow-hazard evaluation is to characterize the hazard and provide design parameters for risk reduction. The UGS recommends critical facilities and structures for human occupancy not be placed in active debris flow travel and deposition areas unless the risk is reduced to an acceptable level. These guidelines use the characteristics of alluvial fan deposits as well as drainage-basin and feeder-channel sediment-supply conditions to evaluate debris-flow hazards. The hazard evaluation relies on the geomorphology, sedimentology, and stratigraphy of existing alluvial fan deposits. Analysis of alluvial-fan deposits provides the geologic basis for estimating frequency and potential volume of debris flows and describing debris-flow behavior. Drainage-basin and feeder-channel characteristics determine potential debris-flow susceptibility and the volume of stored channel sediment available for sediment bulking in future flows.

Landslide Science and Practice

Landslide Science and Practice PDF Author: Claudio Margottini
Publisher: Springer Science & Business Media
ISBN: 3642313132
Category : Nature
Languages : en
Pages : 326

Get Book Here

Book Description
This book contains peer-reviewed papers from the Second World Landslide Forum, organised by the International Consortium on Landslides (ICL), that took place in September 2011. The entire material from the conference has been split into seven volumes, this one is the seventh: 1. Landslide Inventory and Susceptibility and Hazard Zoning, 2. Early Warning, Instrumentation and Monitoring, 3. Spatial Analysis and Modelling, 4. Global Environmental Change, 5. Complex Environment, 6. Risk Assessment, Management and Mitigation, 7. Social and Economic Impact and Policies.

Geologic Hazards of the Magna Quadrangle, Salt Lake County, Utah

Geologic Hazards of the Magna Quadrangle, Salt Lake County, Utah PDF Author: Jessica J. Castleton
Publisher: Utah Geological Survey
ISBN: 155791849X
Category : Hazardous geographic environments
Languages : en
Pages : 78

Get Book Here

Book Description
This study contains 10 1:24,000 scale GIS based geologic hazard maps that include liquafaction, surface fault rupture, flood hazard, landslides, rock-fall, indoor radon potential, collapsible soils, expanisve soils, shallow bedrock and shallow groundwater potential. Also includes a 73 page accompanying report that describes the hazards and provides background information on data sources, the nature and distribution of hazards, and possible hazard reducation measures.

Geologic Hazards of Moab-Spanish Valley, Grand County, Utah

Geologic Hazards of Moab-Spanish Valley, Grand County, Utah PDF Author: Michael D. Hylland
Publisher: Utah Geological Survey
ISBN: 1557916977
Category : Geology
Languages : en
Pages : 32

Get Book Here

Book Description
Moab Valley and the contiguous Spanish Valley comprise a popular residential and recreational area in east-central Utah. Geologic processes that created the rugged and scenic landscape of Moab-Spanish Valley are still active today and can be hazardous to property and life. To address development in areas with geologic hazards, the Utah Geological Survey (UGS) conducted a geologic-hazards investigation to provide information to Moab City and Grand County to help guide development and reduce losses from geologic hazards. This report includes maps of Moab Valley and the northern and central parts of Spanish Valley that provide information on geologic hazards to assist homeowners, planners, and developers in making informed decisions. The maps show areas where hazards may exist and where site-specific studies are advisable prior to development. The maps are for planning purposes only, and do not preclude the necessity for site investigations. Site-specific studies by qualified professionals (engineering geologists, geotechnical engineers, hydrologists) should evaluate hazards and, if necessary, recommend hazard-reduction measures. Because of the small scale of the maps, some hazard areas are not shown; hazard studies are therefore recommended for all critical facilities (for example, hospitals, schools, fire stations), including those outside the mapped hazard areas.

Landslide Risk Management

Landslide Risk Management PDF Author: Oldrich Hungr
Publisher: CRC Press
ISBN: 1439833710
Category : Technology & Engineering
Languages : en
Pages : 776

Get Book Here

Book Description
Landslide Risk Management comprises the proceedings of the International Conference on Landslide Risk Management, held in Vancouver, Canada, from May 31 to June 3, 2005. The first part of the book contains state-of-the-art and invited lectures, prepared by teams of authors selected for their experience in specific topics assigned to them by the JTC

Circular

Circular PDF Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 280

Get Book Here

Book Description


Landslide Loss Reduction: A Guide for State and Local Government Planning

Landslide Loss Reduction: A Guide for State and Local Government Planning PDF Author: Oregon. Department of Geology and Mineral Industries
Publisher:
ISBN:
Category : Landslides
Languages : en
Pages : 0

Get Book Here

Book Description


Characteristics, Causes, and Implications of the 1998 Wasatch Front Landslides, Utah

Characteristics, Causes, and Implications of the 1998 Wasatch Front Landslides, Utah PDF Author: Francis X. Ashland
Publisher: Utah Geological Survey
ISBN: 1557916896
Category : Science
Languages : en
Pages : 55

Get Book Here

Book Description
The majority of the 1998 Wasatch Front landslides were likely triggered following a cumulative rise in ground-water levels resulting from four or more successive years of above-normal precipitation. Triggering of landslide movement likely coincided with a transient ground-water-level rise associated with the spring snowmelt and contemporaneous above-normal precipitation. In most Wasatch Front areas, 1998 was the wettest as well as the last year of the precipitation period. An increase in landslide activity began in 1997, following two to four successive years of above-normal precipitation. This study examines the relation between the 1998 landslides and the 1995-98 precipitation period (1993-98 in Spanish Fork Canyon). Accordingly, this study investigates the significance of the most recent precipitation period in relation to the historical precipitation record, and compares it with the 1980-86 period. In addition, other causes of the 1998 landsliding are explored, most importantly hillside modification related to residential development. This study also examines several issues, and their implications, related to the 1998 Wasatch Front landslides including the susceptibility to reactivation of pre-existing landslides, consideration of the state of landslide activity, and the possibility of developing landslide-movement prediction tools based on an instability threshold concept. The majority of the landslides discussed occurred near urbanized areas of the Wasatch Front and consisted of either translational or rotational earth slides in pre-existing landslide areas. The discussion and conclusions are limited to these landslides and locations. The case histories presented provide new data intended to further the understanding of landslide hazards in the Wasatch Front.

Consensus Preferred Recurrence-interval and Vertical Slip-rate Estimates

Consensus Preferred Recurrence-interval and Vertical Slip-rate Estimates PDF Author: William R. Lund
Publisher: Utah Geological Survey
ISBN: 1557917272
Category : Science
Languages : en
Pages : 114

Get Book Here

Book Description
This report presents the results of the Utah Quaternary Fault Parameters Working Group (hereafter referred to as the Working Group) review and evaluation of Utah’s Quaternary fault paleoseismic-trenching data. The purpose of the review was to (1) critically evaluate the accuracy and completeness of the paleoseismictrenching data, particularly regarding earthquake timing and displacement, (2) where the data permit, assign consensus, preferred recurrence-interval (RI) and vertical slip-rate (VSR) estimates with appropriate confidence limits to the faults/fault sections under review, and (3) identify critical gaps in the paleoseismic data and recommend where and what kinds of additional paleoseismic studies should be performed to ensure that Utah’s earthquake hazard is adequately documented and understood. It is important to note that, with the exception of the Great Salt Lake fault zone, the Working Group’s review was limited to faults/fault sections having paleoseismic-trenching data. Most Quaternary faults/fault sections in Utah have not been trenched, but many have RI and VSR estimates based on tectonic geomorphology or other non-trench-derived studies. Black and others compiled the RI and VSR data for Utah’s Quaternary faults, both those with and without trenches.