Author: Orit Hazzan
Publisher: Springer Nature
ISBN: 3031247582
Category : Computers
Languages : en
Pages : 330
Book Description
Data science is a new field that touches on almost every domain of our lives, and thus it is taught in a variety of environments. Accordingly, the book is suitable for teachers and lecturers in all educational frameworks: K-12, academia and industry. This book aims at closing a significant gap in the literature on the pedagogy of data science. While there are many articles and white papers dealing with the curriculum of data science (i.e., what to teach?), the pedagogical aspect of the field (i.e., how to teach?) is almost neglected. At the same time, the importance of the pedagogical aspects of data science increases as more and more programs are currently open to a variety of people. This book provides a variety of pedagogical discussions and specific teaching methods and frameworks, as well as includes exercises, and guidelines related to many data science concepts (e.g., data thinking and the data science workflow), main machine learning algorithms and concepts (e.g., KNN, SVM, Neural Networks, performance metrics, confusion matrix, and biases) and data science professional topics (e.g., ethics, skills and research approach). Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework, she studies the cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations. Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his post-doc research on data science education at the Bar-Ilan University, and obtained a B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University.
Guide to Intelligent Data Science
Author: Michael R. Berthold
Publisher: Springer Nature
ISBN: 3030455742
Category : Computers
Languages : en
Pages : 427
Book Description
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Publisher: Springer Nature
ISBN: 3030455742
Category : Computers
Languages : en
Pages : 427
Book Description
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.
Data Science in Education Using R
Author: Ryan A. Estrellado
Publisher: Routledge
ISBN: 1000200906
Category : Education
Languages : en
Pages : 331
Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
Publisher: Routledge
ISBN: 1000200906
Category : Education
Languages : en
Pages : 331
Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Guide to Teaching Data Science
Author: Orit Hazzan
Publisher: Springer Nature
ISBN: 3031247582
Category : Computers
Languages : en
Pages : 330
Book Description
Data science is a new field that touches on almost every domain of our lives, and thus it is taught in a variety of environments. Accordingly, the book is suitable for teachers and lecturers in all educational frameworks: K-12, academia and industry. This book aims at closing a significant gap in the literature on the pedagogy of data science. While there are many articles and white papers dealing with the curriculum of data science (i.e., what to teach?), the pedagogical aspect of the field (i.e., how to teach?) is almost neglected. At the same time, the importance of the pedagogical aspects of data science increases as more and more programs are currently open to a variety of people. This book provides a variety of pedagogical discussions and specific teaching methods and frameworks, as well as includes exercises, and guidelines related to many data science concepts (e.g., data thinking and the data science workflow), main machine learning algorithms and concepts (e.g., KNN, SVM, Neural Networks, performance metrics, confusion matrix, and biases) and data science professional topics (e.g., ethics, skills and research approach). Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework, she studies the cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations. Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his post-doc research on data science education at the Bar-Ilan University, and obtained a B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University.
Publisher: Springer Nature
ISBN: 3031247582
Category : Computers
Languages : en
Pages : 330
Book Description
Data science is a new field that touches on almost every domain of our lives, and thus it is taught in a variety of environments. Accordingly, the book is suitable for teachers and lecturers in all educational frameworks: K-12, academia and industry. This book aims at closing a significant gap in the literature on the pedagogy of data science. While there are many articles and white papers dealing with the curriculum of data science (i.e., what to teach?), the pedagogical aspect of the field (i.e., how to teach?) is almost neglected. At the same time, the importance of the pedagogical aspects of data science increases as more and more programs are currently open to a variety of people. This book provides a variety of pedagogical discussions and specific teaching methods and frameworks, as well as includes exercises, and guidelines related to many data science concepts (e.g., data thinking and the data science workflow), main machine learning algorithms and concepts (e.g., KNN, SVM, Neural Networks, performance metrics, confusion matrix, and biases) and data science professional topics (e.g., ethics, skills and research approach). Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework, she studies the cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations. Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his post-doc research on data science education at the Bar-Ilan University, and obtained a B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University.
Data Science for Business Professionals
Author: Probyto Data Science and Consulting Pvt. Ltd.
Publisher: BPB Publications
ISBN: 9389423287
Category : Computers
Languages : en
Pages : 376
Book Description
Primer into the multidisciplinary world of Data Science KEY FEATURESÊÊ - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTIONÊ The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FORÊ This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science.Ê TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business IntelligenceÊ 16. Data Visualization Tools 17. Industry Use Case 1 Ð FormAssist 18. Industry Use Case 2 Ð PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments
Publisher: BPB Publications
ISBN: 9389423287
Category : Computers
Languages : en
Pages : 376
Book Description
Primer into the multidisciplinary world of Data Science KEY FEATURESÊÊ - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTIONÊ The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FORÊ This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science.Ê TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business IntelligenceÊ 16. Data Visualization Tools 17. Industry Use Case 1 Ð FormAssist 18. Industry Use Case 2 Ð PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments
Statistics and Data Science for Teachers
Author: Anna Bargagliotti
Publisher:
ISBN: 9781734223545
Category : Statistics
Languages : en
Pages :
Book Description
"A main goal of Statistics and Data Science for Teachers is to provide teacher educators with a resource to guide entire courses and professional development, or portions of courses and professional development when preparing teachers of all school level grade levels to teach the foundations of statistics and data science in their classrooms. In supporting the spirit of Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II), this book presents statistical ideas through investigations and engagement with the statistical problem-solving process of formulating statistical investigative questions, collecting/considering data, analyzing data, and interpreting results"--
Publisher:
ISBN: 9781734223545
Category : Statistics
Languages : en
Pages :
Book Description
"A main goal of Statistics and Data Science for Teachers is to provide teacher educators with a resource to guide entire courses and professional development, or portions of courses and professional development when preparing teachers of all school level grade levels to teach the foundations of statistics and data science in their classrooms. In supporting the spirit of Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II), this book presents statistical ideas through investigations and engagement with the statistical problem-solving process of formulating statistical investigative questions, collecting/considering data, analyzing data, and interpreting results"--
Envisioning the Data Science Discipline
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309465052
Category : Education
Languages : en
Pages : 69
Book Description
The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education.
Publisher: National Academies Press
ISBN: 0309465052
Category : Education
Languages : en
Pages : 69
Book Description
The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education.
Evolution of STEM-Driven Computer Science Education
Author: Vytautas Štuikys
Publisher: Springer Nature
ISBN: 3031482352
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
The book discusses the evolution of STEM-driven Computer Science (CS) Education based on three categories of Big Concepts, Smart Education (Pedagogy), Technology (tools and adequate processes) and Content that relates to IoT, Data Science and AI. For developing, designing, testing, delivering and assessing learning outcomes for K-12 students (9-12 classes), the multi-dimensional modelling methodology is at the centre. The methodology covers conceptual and feature-based modelling, prototyping, and virtual and physical modelling at the implementation and usage level. Chapters contain case studies to assist understanding and learning. The book contains multiple methodological and scientific innovations including models, frameworks and approaches to drive STEM-driven CS education evolution. Educational strategists, educators, and researchers will find valuable material in this book to help them improve STEM-driven CS education strategies, curriculum development, and new ideas for research.
Publisher: Springer Nature
ISBN: 3031482352
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
The book discusses the evolution of STEM-driven Computer Science (CS) Education based on three categories of Big Concepts, Smart Education (Pedagogy), Technology (tools and adequate processes) and Content that relates to IoT, Data Science and AI. For developing, designing, testing, delivering and assessing learning outcomes for K-12 students (9-12 classes), the multi-dimensional modelling methodology is at the centre. The methodology covers conceptual and feature-based modelling, prototyping, and virtual and physical modelling at the implementation and usage level. Chapters contain case studies to assist understanding and learning. The book contains multiple methodological and scientific innovations including models, frameworks and approaches to drive STEM-driven CS education evolution. Educational strategists, educators, and researchers will find valuable material in this book to help them improve STEM-driven CS education strategies, curriculum development, and new ideas for research.
The Medical Library Association Guide to Data Management for Librarians
Author: Lisa Federer
Publisher: Rowman & Littlefield
ISBN: 1442264284
Category : Language Arts & Disciplines
Languages : en
Pages : 243
Book Description
Technological advances and the rise of collaborative, interdisciplinary approaches have changed the practice of research. The 21st century researcher not only faces the challenge of managing increasingly complex datasets, but also new data sharing requirements from funders and journals. Success in today’s research enterprise requires an understanding of how to work effectively with data, yet most researchers have never had any formal training in data management. Libraries have begun developing services and programs to help researchers meet the demands of the data-driven research enterprise, giving librarians exciting new opportunities to use their expertise and skills. The Medical Library Association Guide to Data Management for Librarians highlights the many ways that librarians are addressing researchers’ changing needs at a variety of institutions, including academic, hospital, and government libraries. Each chapter ends with “pearls of wisdom,” a bulleted list of 5-10 takeaway messages from the chapter that will help readers quickly put the ideas from the chapter into practice. From theoretical foundations to practical applications, this book provides a background for librarians who are new to data management as well as new ideas and approaches for experienced data librarians.
Publisher: Rowman & Littlefield
ISBN: 1442264284
Category : Language Arts & Disciplines
Languages : en
Pages : 243
Book Description
Technological advances and the rise of collaborative, interdisciplinary approaches have changed the practice of research. The 21st century researcher not only faces the challenge of managing increasingly complex datasets, but also new data sharing requirements from funders and journals. Success in today’s research enterprise requires an understanding of how to work effectively with data, yet most researchers have never had any formal training in data management. Libraries have begun developing services and programs to help researchers meet the demands of the data-driven research enterprise, giving librarians exciting new opportunities to use their expertise and skills. The Medical Library Association Guide to Data Management for Librarians highlights the many ways that librarians are addressing researchers’ changing needs at a variety of institutions, including academic, hospital, and government libraries. Each chapter ends with “pearls of wisdom,” a bulleted list of 5-10 takeaway messages from the chapter that will help readers quickly put the ideas from the chapter into practice. From theoretical foundations to practical applications, this book provides a background for librarians who are new to data management as well as new ideas and approaches for experienced data librarians.
The Challenges of the Digital Transformation in Education
Author: Michael E. Auer
Publisher: Springer
ISBN: 3030119327
Category : Technology & Engineering
Languages : en
Pages : 993
Book Description
This book offers the latest research and new perspectives on Interactive Collaborative Learning and Engineering Pedagogy. We are currently witnessing a significant transformation in education, and in order to face today’s real-world challenges, higher education has to find innovative ways to quickly respond to these new needs. Addressing these aspects was the chief aim of the 21st International Conference on Interactive Collaborative Learning (ICL2018), which was held on Kos Island, Greece from September 25 to 28, 2018. Since being founded in 1998, the conference has been devoted to new approaches in learning, with a special focus on collaborative learning. Today the ICL conferences offer a forum for exchanging information on relevant trends and research results, as well as sharing practical experiences in learning and engineering pedagogy. This book includes papers in the fields of: * Collaborative Learning * Computer Aided Language Learning (CALL) * Educational Virtual Environments * Engineering Pedagogy Education * Game based Learning * K-12 and Pre-College Programs * Mobile Learning Environments: Applications It will benefit a broad readership, including policymakers, educators, researchers in pedagogy and learning theory, school teachers, the learning industry, further education lecturers, etc.
Publisher: Springer
ISBN: 3030119327
Category : Technology & Engineering
Languages : en
Pages : 993
Book Description
This book offers the latest research and new perspectives on Interactive Collaborative Learning and Engineering Pedagogy. We are currently witnessing a significant transformation in education, and in order to face today’s real-world challenges, higher education has to find innovative ways to quickly respond to these new needs. Addressing these aspects was the chief aim of the 21st International Conference on Interactive Collaborative Learning (ICL2018), which was held on Kos Island, Greece from September 25 to 28, 2018. Since being founded in 1998, the conference has been devoted to new approaches in learning, with a special focus on collaborative learning. Today the ICL conferences offer a forum for exchanging information on relevant trends and research results, as well as sharing practical experiences in learning and engineering pedagogy. This book includes papers in the fields of: * Collaborative Learning * Computer Aided Language Learning (CALL) * Educational Virtual Environments * Engineering Pedagogy Education * Game based Learning * K-12 and Pre-College Programs * Mobile Learning Environments: Applications It will benefit a broad readership, including policymakers, educators, researchers in pedagogy and learning theory, school teachers, the learning industry, further education lecturers, etc.