Author: Richard Hill
Publisher: Springer Nature
ISBN: 3030791041
Category : Computers
Languages : en
Pages : 285
Book Description
This textbook describes the hands-on application of data science techniques to solve problems in manufacturing and the Industrial Internet of Things (IIoT). Monitoring and managing operational performance is a crucial activity for industrial and business organisations. The emergence of low-cost, accessible computing and storage, through Industrial Digital Technologies (IDT) and Industry 4.0, has generated considerable interest in innovative approaches to doing more with data. Data science, predictive analytics, machine learning, artificial intelligence and general approaches to modelling, simulating and visualising industrial systems have often been considered topics only for research labs and academic departments. This textbook debunks the mystique around applied data science and shows readers, using tutorial-style explanations and real-life case studies, how practitioners can develop their own understanding of performance to achieve tangible business improvements. All exercises can be completed with commonly available tools, many of which are free to install and use. Readers will learn how to use tools to investigate, diagnose, propose and implement analytics solutions that will provide explainable results to deliver digital transformation.
Guide to Industrial Analytics
Author: Richard Hill
Publisher: Springer Nature
ISBN: 3030791041
Category : Computers
Languages : en
Pages : 285
Book Description
This textbook describes the hands-on application of data science techniques to solve problems in manufacturing and the Industrial Internet of Things (IIoT). Monitoring and managing operational performance is a crucial activity for industrial and business organisations. The emergence of low-cost, accessible computing and storage, through Industrial Digital Technologies (IDT) and Industry 4.0, has generated considerable interest in innovative approaches to doing more with data. Data science, predictive analytics, machine learning, artificial intelligence and general approaches to modelling, simulating and visualising industrial systems have often been considered topics only for research labs and academic departments. This textbook debunks the mystique around applied data science and shows readers, using tutorial-style explanations and real-life case studies, how practitioners can develop their own understanding of performance to achieve tangible business improvements. All exercises can be completed with commonly available tools, many of which are free to install and use. Readers will learn how to use tools to investigate, diagnose, propose and implement analytics solutions that will provide explainable results to deliver digital transformation.
Publisher: Springer Nature
ISBN: 3030791041
Category : Computers
Languages : en
Pages : 285
Book Description
This textbook describes the hands-on application of data science techniques to solve problems in manufacturing and the Industrial Internet of Things (IIoT). Monitoring and managing operational performance is a crucial activity for industrial and business organisations. The emergence of low-cost, accessible computing and storage, through Industrial Digital Technologies (IDT) and Industry 4.0, has generated considerable interest in innovative approaches to doing more with data. Data science, predictive analytics, machine learning, artificial intelligence and general approaches to modelling, simulating and visualising industrial systems have often been considered topics only for research labs and academic departments. This textbook debunks the mystique around applied data science and shows readers, using tutorial-style explanations and real-life case studies, how practitioners can develop their own understanding of performance to achieve tangible business improvements. All exercises can be completed with commonly available tools, many of which are free to install and use. Readers will learn how to use tools to investigate, diagnose, propose and implement analytics solutions that will provide explainable results to deliver digital transformation.
Managerial Analytics
Author: Michael Watson
Publisher: Pearson Education
ISBN: 013340742X
Category : Business & Economics
Languages : en
Pages : 253
Book Description
Analytics and Big Data Demystified, The up-to-the-minute introduction for every manager, Everything you need to know to get results!, Concepts, applications, tools, techniques, and pitfalls to avoid, How to derive more value from tools and data you already own, Want to start leveraging analytics and Big Data for profit? Managerial Analytics is your ideal first resource. Whatever your industry or management role, this up-to-date guide will help you get started fast, get started right, and quickly start driving value. Book jacket.
Publisher: Pearson Education
ISBN: 013340742X
Category : Business & Economics
Languages : en
Pages : 253
Book Description
Analytics and Big Data Demystified, The up-to-the-minute introduction for every manager, Everything you need to know to get results!, Concepts, applications, tools, techniques, and pitfalls to avoid, How to derive more value from tools and data you already own, Want to start leveraging analytics and Big Data for profit? Managerial Analytics is your ideal first resource. Whatever your industry or management role, this up-to-date guide will help you get started fast, get started right, and quickly start driving value. Book jacket.
A Practical Guide to Data Mining for Business and Industry
Author: Andrea Ahlemeyer-Stubbe
Publisher: John Wiley & Sons
ISBN: 1118763378
Category : Mathematics
Languages : en
Pages : 323
Book Description
Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.
Publisher: John Wiley & Sons
ISBN: 1118763378
Category : Mathematics
Languages : en
Pages : 323
Book Description
Data mining is well on its way to becoming a recognized discipline in the overlapping areas of IT, statistics, machine learning, and AI. Practical Data Mining for Business presents a user-friendly approach to data mining methods, covering the typical uses to which it is applied. The methodology is complemented by case studies to create a versatile reference book, allowing readers to look for specific methods as well as for specific applications. The book is formatted to allow statisticians, computer scientists, and economists to cross-reference from a particular application or method to sectors of interest.
The Analytics Lifecycle Toolkit
Author: Gregory S. Nelson
Publisher: John Wiley & Sons
ISBN: 1119425093
Category : Business & Economics
Languages : en
Pages : 468
Book Description
An evidence-based organizational framework for exceptional analytics team results The Analytics Lifecycle Toolkit provides managers with a practical manual for integrating data management and analytic technologies into their organization. Author Gregory Nelson has encountered hundreds of unique perspectives on analytics optimization from across industries; over the years, successful strategies have proven to share certain practices, skillsets, expertise, and structural traits. In this book, he details the concepts, people and processes that contribute to exemplary results, and shares an organizational framework for analytics team functions and roles. By merging analytic culture with data and technology strategies, this framework creates understanding for analytics leaders and a toolbox for practitioners. Focused on team effectiveness and the design thinking surrounding product creation, the framework is illustrated by real-world case studies to show how effective analytics team leadership works on the ground. Tools and templates include best practices for process improvement, workforce enablement, and leadership support, while guidance includes both conceptual discussion of the analytics life cycle and detailed process descriptions. Readers will be equipped to: Master fundamental concepts and practices of the analytics life cycle Understand the knowledge domains and best practices for each stage Delve into the details of analytical team processes and process optimization Utilize a robust toolkit designed to support analytic team effectiveness The analytics life cycle includes a diverse set of considerations involving the people, processes, culture, data, and technology, and managers needing stellar analytics performance must understand their unique role in the process of winnowing the big picture down to meaningful action. The Analytics Lifecycle Toolkit provides expert perspective and much-needed insight to managers, while providing practitioners with a new set of tools for optimizing results.
Publisher: John Wiley & Sons
ISBN: 1119425093
Category : Business & Economics
Languages : en
Pages : 468
Book Description
An evidence-based organizational framework for exceptional analytics team results The Analytics Lifecycle Toolkit provides managers with a practical manual for integrating data management and analytic technologies into their organization. Author Gregory Nelson has encountered hundreds of unique perspectives on analytics optimization from across industries; over the years, successful strategies have proven to share certain practices, skillsets, expertise, and structural traits. In this book, he details the concepts, people and processes that contribute to exemplary results, and shares an organizational framework for analytics team functions and roles. By merging analytic culture with data and technology strategies, this framework creates understanding for analytics leaders and a toolbox for practitioners. Focused on team effectiveness and the design thinking surrounding product creation, the framework is illustrated by real-world case studies to show how effective analytics team leadership works on the ground. Tools and templates include best practices for process improvement, workforce enablement, and leadership support, while guidance includes both conceptual discussion of the analytics life cycle and detailed process descriptions. Readers will be equipped to: Master fundamental concepts and practices of the analytics life cycle Understand the knowledge domains and best practices for each stage Delve into the details of analytical team processes and process optimization Utilize a robust toolkit designed to support analytic team effectiveness The analytics life cycle includes a diverse set of considerations involving the people, processes, culture, data, and technology, and managers needing stellar analytics performance must understand their unique role in the process of winnowing the big picture down to meaningful action. The Analytics Lifecycle Toolkit provides expert perspective and much-needed insight to managers, while providing practitioners with a new set of tools for optimizing results.
Keeping Up with the Quants
Author: Thomas H. Davenport
Publisher: Harvard Business Review Press
ISBN: 142218725X
Category : Business & Economics
Languages : en
Pages : 241
Book Description
A renowned thought-leader and a professor of statistics team up to provide the essential tools for enhancing thinking and decision-making in today's workplace in order to be more competitive and successful. 25,000 first printing.
Publisher: Harvard Business Review Press
ISBN: 142218725X
Category : Business & Economics
Languages : en
Pages : 241
Book Description
A renowned thought-leader and a professor of statistics team up to provide the essential tools for enhancing thinking and decision-making in today's workplace in order to be more competitive and successful. 25,000 first printing.
The Practical Guide to HR Analytics
Author: Shonna D. Waters
Publisher:
ISBN: 9781586445324
Category : Business & Economics
Languages : en
Pages : 0
Book Description
The need for HR professionals to understand and apply data analytics is greater than ever. Today's successful HR professionals must ask insightful questions, understand key terms, and intelligently apply data, but may lack a clear understanding of the many forms, types, applications, interpretations, and capabilities of HR analytics. HR Analytics provides a practical approach to using data to solve real HR challenges in organizations and demystifies analytics with clear guidelines and recommendations for making the business case, starting an HR analytics function, avoiding common pitfalls, presenting data through visualization and storytelling, and much more.
Publisher:
ISBN: 9781586445324
Category : Business & Economics
Languages : en
Pages : 0
Book Description
The need for HR professionals to understand and apply data analytics is greater than ever. Today's successful HR professionals must ask insightful questions, understand key terms, and intelligently apply data, but may lack a clear understanding of the many forms, types, applications, interpretations, and capabilities of HR analytics. HR Analytics provides a practical approach to using data to solve real HR challenges in organizations and demystifies analytics with clear guidelines and recommendations for making the business case, starting an HR analytics function, avoiding common pitfalls, presenting data through visualization and storytelling, and much more.
Marketing Data Science
Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887340
Category : Business & Economics
Languages : en
Pages : 812
Book Description
Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Publisher: FT Press
ISBN: 0133887340
Category : Business & Economics
Languages : en
Pages : 812
Book Description
Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Profit Driven Business Analytics
Author: Wouter Verbeke
Publisher: John Wiley & Sons
ISBN: 1119286557
Category : Business & Economics
Languages : en
Pages : 420
Book Description
Maximize profit and optimize decisions with advanced business analytics Profit-Driven Business Analytics provides actionable guidance on optimizing the use of data to add value and drive better business. Combining theoretical and technical insights into daily operations and long-term strategy, this book acts as a development manual for practitioners seeking to conceive, develop, and manage advanced analytical models. Detailed discussion delves into the wide range of analytical approaches and modeling techniques that can help maximize business payoff, and the author team draws upon their recent research to share deep insight about optimal strategy. Real-life case studies and examples illustrate these techniques at work, and provide clear guidance for implementation in your own organization. From step-by-step instruction on data handling, to analytical fine-tuning, to evaluating results, this guide provides invaluable guidance for practitioners seeking to reap the advantages of true business analytics. Despite widespread discussion surrounding the value of data in decision making, few businesses have adopted advanced analytic techniques in any meaningful way. This book shows you how to delve deeper into the data and discover what it can do for your business. Reinforce basic analytics to maximize profits Adopt the tools and techniques of successful integration Implement more advanced analytics with a value-centric approach Fine-tune analytical information to optimize business decisions Both data stored and streamed has been increasing at an exponential rate, and failing to use it to the fullest advantage equates to leaving money on the table. From bolstering current efforts to implementing a full-scale analytics initiative, the vast majority of businesses will see greater profit by applying advanced methods. Profit-Driven Business Analytics provides a practical guidebook and reference for adopting real business analytics techniques.
Publisher: John Wiley & Sons
ISBN: 1119286557
Category : Business & Economics
Languages : en
Pages : 420
Book Description
Maximize profit and optimize decisions with advanced business analytics Profit-Driven Business Analytics provides actionable guidance on optimizing the use of data to add value and drive better business. Combining theoretical and technical insights into daily operations and long-term strategy, this book acts as a development manual for practitioners seeking to conceive, develop, and manage advanced analytical models. Detailed discussion delves into the wide range of analytical approaches and modeling techniques that can help maximize business payoff, and the author team draws upon their recent research to share deep insight about optimal strategy. Real-life case studies and examples illustrate these techniques at work, and provide clear guidance for implementation in your own organization. From step-by-step instruction on data handling, to analytical fine-tuning, to evaluating results, this guide provides invaluable guidance for practitioners seeking to reap the advantages of true business analytics. Despite widespread discussion surrounding the value of data in decision making, few businesses have adopted advanced analytic techniques in any meaningful way. This book shows you how to delve deeper into the data and discover what it can do for your business. Reinforce basic analytics to maximize profits Adopt the tools and techniques of successful integration Implement more advanced analytics with a value-centric approach Fine-tune analytical information to optimize business decisions Both data stored and streamed has been increasing at an exponential rate, and failing to use it to the fullest advantage equates to leaving money on the table. From bolstering current efforts to implementing a full-scale analytics initiative, the vast majority of businesses will see greater profit by applying advanced methods. Profit-Driven Business Analytics provides a practical guidebook and reference for adopting real business analytics techniques.
Analytics at Work
Author: Thomas H. Davenport
Publisher: Harvard Business Press
ISBN: 1422177696
Category : Business & Economics
Languages : en
Pages : 231
Book Description
As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical.
Publisher: Harvard Business Press
ISBN: 1422177696
Category : Business & Economics
Languages : en
Pages : 231
Book Description
As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical.
The Analytics Revolution
Author: Bill Franks
Publisher: John Wiley & Sons
ISBN: 1118976762
Category : Business & Economics
Languages : en
Pages : 304
Book Description
Lead your organization into the industrial revolution of analytics with The Analytics Revolution The topics of big data and analytics continue to be among the most discussed and pursued in the business world today. While a decade ago many people still questioned whether or not data and analytics would help improve their businesses, today virtually no one questions the value that analytics brings to the table. The Analytics Revolution focuses on how this evolution has come to pass and explores the next wave of evolution that is underway. Making analytics operational involves automating and embedding analytics directly into business processes and allowing the analytics to prescribe and make decisions. It is already occurring all around us whether we know it or not. The Analytics Revolution delves into the requirements for laying a solid technical and organizational foundation that is capable of supporting operational analytics at scale, and covers factors to consider if an organization is to succeed in making analytics operational. Along the way, you'll learn how changes in technology and the business environment have led to the necessity of both incorporating big data into analytic processes and making them operational. The book cuts straight through the considerable marketplace hype and focuses on what is really important. The book includes: An overview of what operational analytics are and what trends lead us to them Tips on structuring technology infrastructure and analytics organizations to succeed A discussion of how to change corporate culture to enable both faster discovery of important new analytics and quicker implementation cycles of what is discovered Guidance on how to justify, implement, and govern operational analytics The Analytics Revolution gives you everything you need to implement operational analytic processes with big data.
Publisher: John Wiley & Sons
ISBN: 1118976762
Category : Business & Economics
Languages : en
Pages : 304
Book Description
Lead your organization into the industrial revolution of analytics with The Analytics Revolution The topics of big data and analytics continue to be among the most discussed and pursued in the business world today. While a decade ago many people still questioned whether or not data and analytics would help improve their businesses, today virtually no one questions the value that analytics brings to the table. The Analytics Revolution focuses on how this evolution has come to pass and explores the next wave of evolution that is underway. Making analytics operational involves automating and embedding analytics directly into business processes and allowing the analytics to prescribe and make decisions. It is already occurring all around us whether we know it or not. The Analytics Revolution delves into the requirements for laying a solid technical and organizational foundation that is capable of supporting operational analytics at scale, and covers factors to consider if an organization is to succeed in making analytics operational. Along the way, you'll learn how changes in technology and the business environment have led to the necessity of both incorporating big data into analytic processes and making them operational. The book cuts straight through the considerable marketplace hype and focuses on what is really important. The book includes: An overview of what operational analytics are and what trends lead us to them Tips on structuring technology infrastructure and analytics organizations to succeed A discussion of how to change corporate culture to enable both faster discovery of important new analytics and quicker implementation cycles of what is discovered Guidance on how to justify, implement, and govern operational analytics The Analytics Revolution gives you everything you need to implement operational analytic processes with big data.