Verification and Validation in Scientific Computing

Verification and Validation in Scientific Computing PDF Author: William L. Oberkampf
Publisher: Cambridge University Press
ISBN: 1139491768
Category : Computers
Languages : en
Pages : 782

Get Book Here

Book Description
Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.

Verification and Validation in Scientific Computing

Verification and Validation in Scientific Computing PDF Author: William L. Oberkampf
Publisher: Cambridge University Press
ISBN: 1139491768
Category : Computers
Languages : en
Pages : 782

Get Book Here

Book Description
Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.

Computational Mechanics

Computational Mechanics PDF Author: Zhenhan Yao
Publisher: Springer Science & Business Media
ISBN: 3540759999
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
Computational Mechanics is the proceedings of the International Symposium on Computational Mechanics, ISCM 2007. This conference is the first of a series created by a group of prominent scholars from the Mainland of China, Hong Kong, Taiwan, and overseas Chinese, who are very active in the field. The book includes 22 full papers of plenary and semi-plenary lectures and approximately 150 one-page summaries.

Guide for Verification and Validation in Computational Solid Mechanics

Guide for Verification and Validation in Computational Solid Mechanics PDF Author: American Society of Mechanical Engineers
Publisher:
ISBN: 9780791830420
Category : Mechanics, Applied
Languages : en
Pages : 0

Get Book Here

Book Description


Experimentation, Validation, and Uncertainty Analysis for Engineers

Experimentation, Validation, and Uncertainty Analysis for Engineers PDF Author: Hugh W. Coleman
Publisher: John Wiley & Sons
ISBN: 1119417708
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.

Computer Simulation Validation

Computer Simulation Validation PDF Author: Claus Beisbart
Publisher: Springer
ISBN: 3319707663
Category : Computers
Languages : en
Pages : 1056

Get Book Here

Book Description
This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.

Experimental and Applied Mechanics, Volume 6

Experimental and Applied Mechanics, Volume 6 PDF Author: Tom Proulx
Publisher: Springer Science & Business Media
ISBN: 1461402220
Category : Technology & Engineering
Languages : en
Pages : 649

Get Book Here

Book Description
Experimental and Applied Mechanics represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.

Proceedings of the 1st International Conference in Safety and Crisis Management in the Construction, Tourism and SME Sectors

Proceedings of the 1st International Conference in Safety and Crisis Management in the Construction, Tourism and SME Sectors PDF Author:
Publisher: Universal-Publishers
ISBN: 1612335578
Category :
Languages : en
Pages : 748

Get Book Here

Book Description


Approach and Verification

Approach and Verification PDF Author: Subramaniam Ganesan
Publisher: SAE International
ISBN: 0768057264
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This book is the fourth in a series of four volumes on this subject and features 12 papers, published between 2002-2009, that address the challenges and importance of systems approach in system verification and validation, stressing the use of advanced tools and approaches. Topics covered include: Systems integration and verification Software engineering in future automotive systems development Configuration management of the model-based design process

Numerical Approximation of the Magnetoquasistatic Model with Uncertainties

Numerical Approximation of the Magnetoquasistatic Model with Uncertainties PDF Author: Ulrich Römer
Publisher: Springer
ISBN: 3319412949
Category : Technology & Engineering
Languages : en
Pages : 128

Get Book Here

Book Description
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.

Fundamental Constants

Fundamental Constants PDF Author: Boris M. Menin
Publisher: Cambridge Scholars Publishing
ISBN: 152753037X
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
The book is devoted to one of the important areas of theoretical and experimental physics—the calculation of the accuracy of measurements of fundamental physical constants. To achieve this goal, numerous methods and criteria have been proposed. However, all of them are focused on identifying a posteriori uncertainty caused by the idealization of the model and its subsequent computerization in comparison with the physical system. This book focuses on formulating an a priori interaction between the level of a detailed description of a material object (the number of registered quantities) and the lowest uncertainty in measuring a physical constant. It contains the materials necessary for the optimal design of models describing a physical phenomenon. It will appeal to scientists and engineers, as well as university students.