Author: Howard Whitley Eves
Publisher: MAA
ISBN: 9780883853108
Category : History
Languages : en
Pages : 292
Book Description
[V.2] This is a companion to Great moments in mathematics before 1650. It can be appreciated by anyone with a working knowledge of beginning deferential and integral calculus. Includes: the birth of mathematical probability, the invention of the differential calculus, the discovery of non-Euclidean geometry, the discovery of noncommutative algebra, and the resolution of the four-color problem.
Great Moments in Mathematics (before 1650)
Author: Howard Whitley Eves
Publisher: MAA
ISBN: 9780883853108
Category : History
Languages : en
Pages : 292
Book Description
[V.2] This is a companion to Great moments in mathematics before 1650. It can be appreciated by anyone with a working knowledge of beginning deferential and integral calculus. Includes: the birth of mathematical probability, the invention of the differential calculus, the discovery of non-Euclidean geometry, the discovery of noncommutative algebra, and the resolution of the four-color problem.
Publisher: MAA
ISBN: 9780883853108
Category : History
Languages : en
Pages : 292
Book Description
[V.2] This is a companion to Great moments in mathematics before 1650. It can be appreciated by anyone with a working knowledge of beginning deferential and integral calculus. Includes: the birth of mathematical probability, the invention of the differential calculus, the discovery of non-Euclidean geometry, the discovery of noncommutative algebra, and the resolution of the four-color problem.
Great Moments in Mathematics (before 1650)
Author: Howard Eves
Publisher:
ISBN: 9780883853009
Category : Mathematics
Languages : en
Pages : 270
Book Description
Publisher:
ISBN: 9780883853009
Category : Mathematics
Languages : en
Pages : 270
Book Description
Great Moments in Mathematics
Author: Howard Eves
Publisher: American Mathematical Soc.
ISBN: 1614442150
Category : Mathematics
Languages : en
Pages : 278
Book Description
Publisher: American Mathematical Soc.
ISBN: 1614442150
Category : Mathematics
Languages : en
Pages : 278
Book Description
Great Moments in Mathematics
Author: Howard Eves
Publisher:
ISBN: 9780883853009
Category :
Languages : en
Pages : 263
Book Description
Publisher:
ISBN: 9780883853009
Category :
Languages : en
Pages : 263
Book Description
Mathematical Delights
Author: Ross Honsberger
Publisher: American Mathematical Soc.
ISBN: 1470451697
Category : Education
Languages : en
Pages : 264
Book Description
Mathematical Delights is a collection of 90 short elementary gems from algebra, geometry, combinatorics, and number theory. Ross Honsberger presents us with some surprising results, brilliant ideas, and beautiful arguments in mathematics, written in his wonderfully lucid style. The book is a mathematical entertainment to be read at a leisurely pace. High school mathematics should equip the reader to handle the problems presented in the book. The topics are entirely independent and can be read in any order. A useful set of indices helps the reader locate topics in the text.
Publisher: American Mathematical Soc.
ISBN: 1470451697
Category : Education
Languages : en
Pages : 264
Book Description
Mathematical Delights is a collection of 90 short elementary gems from algebra, geometry, combinatorics, and number theory. Ross Honsberger presents us with some surprising results, brilliant ideas, and beautiful arguments in mathematics, written in his wonderfully lucid style. The book is a mathematical entertainment to be read at a leisurely pace. High school mathematics should equip the reader to handle the problems presented in the book. The topics are entirely independent and can be read in any order. A useful set of indices helps the reader locate topics in the text.
A Garden of Integrals
Author: Frank E. Burk
Publisher: American Mathematical Soc.
ISBN: 1614442096
Category : Mathematics
Languages : en
Pages : 297
Book Description
The derivative and the integral are the fundamental notions of calculus. Though there is essentially only one derivative, there is a variety of integrals, developed over the years for a variety of purposes, and this book describes them. No other single source treats all of the integrals of Cauchy, Riemann, RiemannStieltjes, Lebesgue, LebesgueSteiltjes, HenstockKurzweil, Weiner, and Feynman. The basic properties of each are proved, their similarities and differences are pointed out, and the reason for their existence and their uses are given. There is plentiful historical information. The audience for the book is advanced undergraduate mathematics majors, graduate students, and faculty members. Even experienced faculty members are unlikely to be aware of all of the integrals in the Garden of Integrals and the book provides an opportunity to see them and appreciate their richness. Professor Burk's clear and wellmotivated exposition makes this book a joy to read. The book can serve as a reference, as a supplement to courses that include the theory of integration, and a source of exercises in analysis. There is no other book like it.
Publisher: American Mathematical Soc.
ISBN: 1614442096
Category : Mathematics
Languages : en
Pages : 297
Book Description
The derivative and the integral are the fundamental notions of calculus. Though there is essentially only one derivative, there is a variety of integrals, developed over the years for a variety of purposes, and this book describes them. No other single source treats all of the integrals of Cauchy, Riemann, RiemannStieltjes, Lebesgue, LebesgueSteiltjes, HenstockKurzweil, Weiner, and Feynman. The basic properties of each are proved, their similarities and differences are pointed out, and the reason for their existence and their uses are given. There is plentiful historical information. The audience for the book is advanced undergraduate mathematics majors, graduate students, and faculty members. Even experienced faculty members are unlikely to be aware of all of the integrals in the Garden of Integrals and the book provides an opportunity to see them and appreciate their richness. Professor Burk's clear and wellmotivated exposition makes this book a joy to read. The book can serve as a reference, as a supplement to courses that include the theory of integration, and a source of exercises in analysis. There is no other book like it.
A Mathematical Space Odyssey
Author: Claudi Alsina
Publisher: The Mathematical Association of America
ISBN: 0883853582
Category : Mathematics
Languages : en
Pages : 288
Book Description
Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. Courses in solid geometry have largely disappeared from American high schools and colleges. The authors are convinced that a mathematical exploration of three-dimensional geometry merits some attention in today’s curriculum. A Mathematical Space Odyssey: Solid Geometry in the 21st Century is devoted to presenting techniques for proving a variety of mathematical results in three-dimensional space, techniques that may improve one’s ability to think visually. Special attention is given to the classical icons of solid geometry (prisms, pyramids, platonic solids, cones, cylinders, and spheres) and many new and classical results: Cavalieri’s principle, Commandino’s theorem, de Gua’s theorem, Prince Rupert’s cube, the Menger sponge, the Schwarz lantern, Euler’s rotation theorem, the Loomis-Whitney inequality, Pythagorean theorems in three dimensions, etc. The authors devote a chapter to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. In addition to many figures illustrating theorems and their proofs, a selection of photographs of three-dimensional works of art and architecture are included. Each chapter includes a selection of Challenges for the reader to explore further properties and applications. It concludes with solutions to all the Challenges in the book, references, and a complete index. Readers should be familiar with high school algebra, plane and analytic geometry, and trigonometry. While brief appearances of calculus do occur, no knowledge of calculus is necessary to enjoy this book.
Publisher: The Mathematical Association of America
ISBN: 0883853582
Category : Mathematics
Languages : en
Pages : 288
Book Description
Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. Courses in solid geometry have largely disappeared from American high schools and colleges. The authors are convinced that a mathematical exploration of three-dimensional geometry merits some attention in today’s curriculum. A Mathematical Space Odyssey: Solid Geometry in the 21st Century is devoted to presenting techniques for proving a variety of mathematical results in three-dimensional space, techniques that may improve one’s ability to think visually. Special attention is given to the classical icons of solid geometry (prisms, pyramids, platonic solids, cones, cylinders, and spheres) and many new and classical results: Cavalieri’s principle, Commandino’s theorem, de Gua’s theorem, Prince Rupert’s cube, the Menger sponge, the Schwarz lantern, Euler’s rotation theorem, the Loomis-Whitney inequality, Pythagorean theorems in three dimensions, etc. The authors devote a chapter to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. In addition to many figures illustrating theorems and their proofs, a selection of photographs of three-dimensional works of art and architecture are included. Each chapter includes a selection of Challenges for the reader to explore further properties and applications. It concludes with solutions to all the Challenges in the book, references, and a complete index. Readers should be familiar with high school algebra, plane and analytic geometry, and trigonometry. While brief appearances of calculus do occur, no knowledge of calculus is necessary to enjoy this book.
Varieties of Integration
Author: C. Ray Rosentrater
Publisher: American Mathematical Soc.
ISBN: 1614442177
Category : Mathematics
Languages : en
Pages : 343
Book Description
Historical introduction -- The Riemann integral -- The Darboux integral -- A functional zoo -- Another approach : measure theory -- The Lebesgue integral -- The Gauge integral -- Stieltjes-type integrals and extensions -- A look back -- Afterword : L2 spaces and Fourier series
Publisher: American Mathematical Soc.
ISBN: 1614442177
Category : Mathematics
Languages : en
Pages : 343
Book Description
Historical introduction -- The Riemann integral -- The Darboux integral -- A functional zoo -- Another approach : measure theory -- The Lebesgue integral -- The Gauge integral -- Stieltjes-type integrals and extensions -- A look back -- Afterword : L2 spaces and Fourier series
A Guide to Real Variables
Author: Steven G. Krantz
Publisher: MAA
ISBN: 9780883853443
Category : Mathematics
Languages : en
Pages : 176
Book Description
A concise guide to support an undergraduate real analysis course.
Publisher: MAA
ISBN: 9780883853443
Category : Mathematics
Languages : en
Pages : 176
Book Description
A concise guide to support an undergraduate real analysis course.
A Guide to Plane Algebraic Curves
Author: Keith Kendig
Publisher: MAA
ISBN: 0883853531
Category : Mathematics
Languages : en
Pages : 211
Book Description
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.
Publisher: MAA
ISBN: 0883853531
Category : Mathematics
Languages : en
Pages : 211
Book Description
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.