Author: P. Schneider
Publisher: Springer Science & Business Media
ISBN: 3662037580
Category : Science
Languages : en
Pages : 564
Book Description
Light observed from distant objects is found to be deflected by the gravitational field of massive objects near the line of sight - an effect predicted by Einstein in his first paper setting forth the general theory of relativity, and confirmed by Eddington soon afterwards. If the source of the light is sufficiently distant and bright, and if the intervening object is massive enough and near enough to the line of sight, the gravitational field acts like a lens, focusing the light and producing one or more bright images of the source. This book, by renowned researchers in the field, begins by discussing the basic physics behind gravitational lenses: the optics of curved space-time. It then derives the appropriate equations for predicting the properties of these lenses. In addition, it presents up-to-date observational evidence for gravitational lenses and describes the particular properties of the observed cases. The authors also discuss applications of the results to problems in cosmology.
Gravitational Lenses
Author: P. Schneider
Publisher: Springer Science & Business Media
ISBN: 3662037580
Category : Science
Languages : en
Pages : 564
Book Description
Light observed from distant objects is found to be deflected by the gravitational field of massive objects near the line of sight - an effect predicted by Einstein in his first paper setting forth the general theory of relativity, and confirmed by Eddington soon afterwards. If the source of the light is sufficiently distant and bright, and if the intervening object is massive enough and near enough to the line of sight, the gravitational field acts like a lens, focusing the light and producing one or more bright images of the source. This book, by renowned researchers in the field, begins by discussing the basic physics behind gravitational lenses: the optics of curved space-time. It then derives the appropriate equations for predicting the properties of these lenses. In addition, it presents up-to-date observational evidence for gravitational lenses and describes the particular properties of the observed cases. The authors also discuss applications of the results to problems in cosmology.
Publisher: Springer Science & Business Media
ISBN: 3662037580
Category : Science
Languages : en
Pages : 564
Book Description
Light observed from distant objects is found to be deflected by the gravitational field of massive objects near the line of sight - an effect predicted by Einstein in his first paper setting forth the general theory of relativity, and confirmed by Eddington soon afterwards. If the source of the light is sufficiently distant and bright, and if the intervening object is massive enough and near enough to the line of sight, the gravitational field acts like a lens, focusing the light and producing one or more bright images of the source. This book, by renowned researchers in the field, begins by discussing the basic physics behind gravitational lenses: the optics of curved space-time. It then derives the appropriate equations for predicting the properties of these lenses. In addition, it presents up-to-date observational evidence for gravitational lenses and describes the particular properties of the observed cases. The authors also discuss applications of the results to problems in cosmology.
Gravitational Lensing: Strong, Weak and Micro
Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 3540303103
Category : Science
Languages : en
Pages : 565
Book Description
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein’s Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
Publisher: Springer Science & Business Media
ISBN: 3540303103
Category : Science
Languages : en
Pages : 565
Book Description
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein’s Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
Introduction to Gravitational Lensing
Author: Massimo Meneghetti
Publisher: Springer Nature
ISBN: 3030735826
Category : Science
Languages : en
Pages : 412
Book Description
This book introduces the phenomenology of gravitational lensing in an accessible manner and provides a thorough discussion of the related astrophysical applications. It is intended for advanced undergraduates and graduate students who want to start working in this rapidly evolving field. This includes also senior researchers who are interested in ongoing or future surveys and missions such as DES, Euclid, WFIRST, LSST. The reader is guided through many fascinating topics related to gravitational lensing like the structure of our galaxy, the searching for exoplanets, the investigation of dark matter in galaxies and galaxy clusters, and several aspects of cosmology, including dark energy and the cosmic microwave background. The author, who has gained valuable experience as academic teacher, guides the readers towards the comprehension of the theory of gravitational lensing and related observational techniques by using simple codes written in python. This approach, beyond facilitating the understanding of gravitational lensing, is preparatory for learning the python programming language which is gaining large popularity both in academia and in the private sector.
Publisher: Springer Nature
ISBN: 3030735826
Category : Science
Languages : en
Pages : 412
Book Description
This book introduces the phenomenology of gravitational lensing in an accessible manner and provides a thorough discussion of the related astrophysical applications. It is intended for advanced undergraduates and graduate students who want to start working in this rapidly evolving field. This includes also senior researchers who are interested in ongoing or future surveys and missions such as DES, Euclid, WFIRST, LSST. The reader is guided through many fascinating topics related to gravitational lensing like the structure of our galaxy, the searching for exoplanets, the investigation of dark matter in galaxies and galaxy clusters, and several aspects of cosmology, including dark energy and the cosmic microwave background. The author, who has gained valuable experience as academic teacher, guides the readers towards the comprehension of the theory of gravitational lensing and related observational techniques by using simple codes written in python. This approach, beyond facilitating the understanding of gravitational lensing, is preparatory for learning the python programming language which is gaining large popularity both in academia and in the private sector.
Principles of Gravitational Lensing
Author: Arthur B. Congdon
Publisher: Springer
ISBN: 303002122X
Category : Science
Languages : en
Pages : 292
Book Description
This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein’s prediction that gravity bends light, and shows how that fundamental idea has spawned a rich field of study over the past century. The gravitational deflection of light was first detected by Eddington during a solar eclipse in May 1919, launching Einstein and his theory of relativity into public view. Yet the possibility of using the phenomenon to unlock mysteries of the Universe seemed remote, given the technology of the day. Theoretical work was carried out sporadically over the next six decades, but only with the discovery of the system Q0957+561 in 1979 was gravitational lensing transformed from a curiosity of general relativity into a practical observational tool. This book describes how the three subfields known as strong lensing, weak lensing, and microlensing have grown independently but become increasingly intertwined. Drawing on their research experience, Congdon and Keeton begin with the basic physics of light bending, then present the mathematical foundations of gravitational lensing, building up to current research topics in a clear and systematic way. Relevant background material from physics and mathematics is included, making the book self-contained. The derivations and explanations are supplemented by exercises designed to help students master the theoretical concepts as well as the methods that drive current research. An extensive bibliography guides those wishing to delve more deeply into particular areas of interest. Principles of Gravitational Lensing is ideal for advanced students and seasoned researchers looking to penetrate this thriving subject and even contribute research of their own.
Publisher: Springer
ISBN: 303002122X
Category : Science
Languages : en
Pages : 292
Book Description
This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein’s prediction that gravity bends light, and shows how that fundamental idea has spawned a rich field of study over the past century. The gravitational deflection of light was first detected by Eddington during a solar eclipse in May 1919, launching Einstein and his theory of relativity into public view. Yet the possibility of using the phenomenon to unlock mysteries of the Universe seemed remote, given the technology of the day. Theoretical work was carried out sporadically over the next six decades, but only with the discovery of the system Q0957+561 in 1979 was gravitational lensing transformed from a curiosity of general relativity into a practical observational tool. This book describes how the three subfields known as strong lensing, weak lensing, and microlensing have grown independently but become increasingly intertwined. Drawing on their research experience, Congdon and Keeton begin with the basic physics of light bending, then present the mathematical foundations of gravitational lensing, building up to current research topics in a clear and systematic way. Relevant background material from physics and mathematics is included, making the book self-contained. The derivations and explanations are supplemented by exercises designed to help students master the theoretical concepts as well as the methods that drive current research. An extensive bibliography guides those wishing to delve more deeply into particular areas of interest. Principles of Gravitational Lensing is ideal for advanced students and seasoned researchers looking to penetrate this thriving subject and even contribute research of their own.
Singularity Theory and Gravitational Lensing
Author: Arlie O. Petters
Publisher: Springer Science & Business Media
ISBN: 1461201454
Category : Science
Languages : en
Pages : 616
Book Description
This monograph is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Part III employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation.
Publisher: Springer Science & Business Media
ISBN: 1461201454
Category : Science
Languages : en
Pages : 616
Book Description
This monograph is the first to develop a mathematical theory of gravitational lensing. The theory applies to any finite number of deflector planes and highlights the distinctions between single and multiple plane lensing. Introductory material in Parts I and II present historical highlights and the astrophysical aspects of the subject. Part III employs the ideas and results of singularity theory to put gravitational lensing on a rigorous mathematical foundation.
Gravitational Lensing
Author: Scott Dodelson
Publisher: Cambridge University Press
ISBN: 1107129761
Category : Science
Languages : en
Pages : 245
Book Description
This book presents the basics of gravitational lensing, accessible to students and researchers with a wide range of backgrounds.
Publisher: Cambridge University Press
ISBN: 1107129761
Category : Science
Languages : en
Pages : 245
Book Description
This book presents the basics of gravitational lensing, accessible to students and researchers with a wide range of backgrounds.
Astrophysical Applications of Gravitational Lensing
Author: Evencio Mediavilla
Publisher: Cambridge University Press
ISBN: 1107078547
Category : Science
Languages : en
Pages : 305
Book Description
This book presents gravitational lensing as an essential tool in astrophysics for tracking dark matter at all scales in the Universe.
Publisher: Cambridge University Press
ISBN: 1107078547
Category : Science
Languages : en
Pages : 305
Book Description
This book presents gravitational lensing as an essential tool in astrophysics for tracking dark matter at all scales in the Universe.
Gravitational Lensing And Microlensing
Author: Silvia Mollerach
Publisher: World Scientific
ISBN: 9814489352
Category : Science
Languages : en
Pages : 204
Book Description
This book provides a comprehensive and self-contained exposition of gravitational lensing phenomena. It presents the up-to-date status of gravitational lensing and microlensing, covering the cosmological applications of the observed lensing by galaxies, clusters and the large scale structures, as well as the microlensing searches in the Local Group and its applications to unveil the nature of the galactic dark matter, the search for planetary objects and the distribution of faint stars in our galaxy.Gravitational Lensing and Microlensing is pitched at the level of the graduate student interested in the issues of astrophysics and cosmology, and should be useful for specialist researchers as well.
Publisher: World Scientific
ISBN: 9814489352
Category : Science
Languages : en
Pages : 204
Book Description
This book provides a comprehensive and self-contained exposition of gravitational lensing phenomena. It presents the up-to-date status of gravitational lensing and microlensing, covering the cosmological applications of the observed lensing by galaxies, clusters and the large scale structures, as well as the microlensing searches in the Local Group and its applications to unveil the nature of the galactic dark matter, the search for planetary objects and the distribution of faint stars in our galaxy.Gravitational Lensing and Microlensing is pitched at the level of the graduate student interested in the issues of astrophysics and cosmology, and should be useful for specialist researchers as well.
Formation of Structure in the Universe
Author: Avishai Dekel
Publisher: Cambridge University Press
ISBN: 9780521586320
Category : Science
Languages : en
Pages : 492
Book Description
This advanced textbook provides an up-to-date and comprehensive introduction to the very active field of structure formation in cosmology. It is written by eleven world-leading authorities. Written in a clear and pedagogical style appropriate for graduate students in astronomy and physics, this textbook introduces the reader to a wide range of exciting topics in contemporary cosmology: from recent advances in redshift surveys, to the latest models in gravitational lensing and cosmological simulations. The authors are all world-renowned experts both for their research and teaching skills. In the fast-moving field of structure formation, this book provides advanced undergraduate and graduate students with a welcome textbook which unites the latest theory and observations.
Publisher: Cambridge University Press
ISBN: 9780521586320
Category : Science
Languages : en
Pages : 492
Book Description
This advanced textbook provides an up-to-date and comprehensive introduction to the very active field of structure formation in cosmology. It is written by eleven world-leading authorities. Written in a clear and pedagogical style appropriate for graduate students in astronomy and physics, this textbook introduces the reader to a wide range of exciting topics in contemporary cosmology: from recent advances in redshift surveys, to the latest models in gravitational lensing and cosmological simulations. The authors are all world-renowned experts both for their research and teaching skills. In the fast-moving field of structure formation, this book provides advanced undergraduate and graduate students with a welcome textbook which unites the latest theory and observations.
Gravitational Lensing of Quasars
Author: Alexander Eigenbrod
Publisher:
ISBN: 9782940222575
Category : Gravitational lenses
Languages : en
Pages : 142
Book Description
Publisher:
ISBN: 9782940222575
Category : Gravitational lenses
Languages : en
Pages : 142
Book Description