Author: Brendan J. Frey
Publisher: MIT Press
ISBN: 9780262062022
Category : Computers
Languages : en
Pages : 230
Book Description
Content Description. #Includes bibliographical references and index.
Graphical Models for Machine Learning and Digital Communication
Author: Brendan J. Frey
Publisher: MIT Press
ISBN: 9780262062022
Category : Computers
Languages : en
Pages : 230
Book Description
Content Description. #Includes bibliographical references and index.
Publisher: MIT Press
ISBN: 9780262062022
Category : Computers
Languages : en
Pages : 230
Book Description
Content Description. #Includes bibliographical references and index.
Probabilistic Graphical Models
Author: Daphne Koller
Publisher: MIT Press
ISBN: 0262258358
Category : Computers
Languages : en
Pages : 1270
Book Description
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Publisher: MIT Press
ISBN: 0262258358
Category : Computers
Languages : en
Pages : 1270
Book Description
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Introduction to Machine Learning
Author: Ethem Alpaydin
Publisher: MIT Press
ISBN: 9780262012119
Category : Computers
Languages : en
Pages : 468
Book Description
An introductory text in machine learning that gives a unified treatment of methods based on statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining.
Publisher: MIT Press
ISBN: 9780262012119
Category : Computers
Languages : en
Pages : 468
Book Description
An introductory text in machine learning that gives a unified treatment of methods based on statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining.
Theoretical Aspects of Evolutionary Computing
Author: Leila Kallel
Publisher: Springer Science & Business Media
ISBN: 366204448X
Category : Computers
Languages : en
Pages : 495
Book Description
During the first week of September 1999, the Second EvoNet Summer School on Theoretical Aspects of Evolutionary Computing was held at the Middelheim cam pus of the University of Antwerp, Belgium. Originally intended as a small get together of PhD students interested in the theory of evolutionary computing, the summer school grew to become a successful combination of a four-day workshop with over twenty researchers in the field and a two-day lecture series open to a wider audience. This book is based on the lectures and workshop contributions of this summer school. Its first part consists of tutorial papers which introduce the reader to a num ber of important directions in the theory of evolutionary computing. The tutorials are at graduate level andassume only a basic backgroundin mathematics and com puter science. No prior knowledge ofevolutionary computing or its theory is nec essary. The second part of the book consists of technical papers, selected from the workshop contributions. A number of them build on the material of the tutorials, exploring the theory to research level. Other technical papers may require a visit to the library.
Publisher: Springer Science & Business Media
ISBN: 366204448X
Category : Computers
Languages : en
Pages : 495
Book Description
During the first week of September 1999, the Second EvoNet Summer School on Theoretical Aspects of Evolutionary Computing was held at the Middelheim cam pus of the University of Antwerp, Belgium. Originally intended as a small get together of PhD students interested in the theory of evolutionary computing, the summer school grew to become a successful combination of a four-day workshop with over twenty researchers in the field and a two-day lecture series open to a wider audience. This book is based on the lectures and workshop contributions of this summer school. Its first part consists of tutorial papers which introduce the reader to a num ber of important directions in the theory of evolutionary computing. The tutorials are at graduate level andassume only a basic backgroundin mathematics and com puter science. No prior knowledge ofevolutionary computing or its theory is nec essary. The second part of the book consists of technical papers, selected from the workshop contributions. A number of them build on the material of the tutorials, exploring the theory to research level. Other technical papers may require a visit to the library.
Learning with Kernels
Author: Bernhard Scholkopf
Publisher: MIT Press
ISBN: 0262536579
Category : Computers
Languages : en
Pages : 645
Book Description
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.
Publisher: MIT Press
ISBN: 0262536579
Category : Computers
Languages : en
Pages : 645
Book Description
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.
Learning Kernel Classifiers
Author: Ralf Herbrich
Publisher: MIT Press
ISBN: 0262546590
Category : Computers
Languages : en
Pages : 393
Book Description
An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.
Publisher: MIT Press
ISBN: 0262546590
Category : Computers
Languages : en
Pages : 393
Book Description
An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.
Advances in Neural Information Processing Systems 12
Author: Sara A. Solla
Publisher: MIT Press
ISBN: 9780262194501
Category : Computers
Languages : en
Pages : 1124
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Publisher: MIT Press
ISBN: 9780262194501
Category : Computers
Languages : en
Pages : 1124
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Introduction to Statistical Relational Learning
Author: Lise Getoor
Publisher: MIT Press
ISBN: 0262538687
Category : Computers
Languages : en
Pages : 602
Book Description
Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
Publisher: MIT Press
ISBN: 0262538687
Category : Computers
Languages : en
Pages : 602
Book Description
Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.
Graphical Models
Author: Michael Irwin Jordan
Publisher: MIT Press
ISBN: 9780262600422
Category : Computers
Languages : en
Pages : 450
Book Description
This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithm and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Contributors H. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodríguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss
Publisher: MIT Press
ISBN: 9780262600422
Category : Computers
Languages : en
Pages : 450
Book Description
This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithm and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Graphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research. Contributors H. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodríguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss
Deep Learning in Science
Author: Pierre Baldi
Publisher: Cambridge University Press
ISBN: 1108845355
Category : Computers
Languages : en
Pages : 387
Book Description
Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.
Publisher: Cambridge University Press
ISBN: 1108845355
Category : Computers
Languages : en
Pages : 387
Book Description
Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.