Graphical Data Analysis with R

Graphical Data Analysis with R PDF Author: Antony Unwin
Publisher: CRC Press
ISBN: 1498715249
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.

Data Analysis and Graphics Using R

Data Analysis and Graphics Using R PDF Author: John Maindonald
Publisher: Cambridge University Press
ISBN: 9780521861168
Category : Computers
Languages : en
Pages : 528

Get Book Here

Book Description
Join the revolution ignited by the ground-breaking R system! Starting with an introduction to R, covering standard regression methods, then presenting more advanced topics, this book guides users through the practical and powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display and interpretation of data. The many worked examples, taken from real-world research, are accompanied by commentary on what is done and why. A website provides computer code and data sets, allowing readers to reproduce all analyses. Updates and solutions to selected exercises are also available. Assuming only basic statistical knowledge, the book is ideal for research scientists, final-year undergraduate or graduate level students of applied statistics, and practising statisticians. It is both for learning and for reference. This revised edition reflects changes in R since 2003 and has new material on survival analysis, random coefficient models, and the handling of high-dimensional data.

ggplot2

ggplot2 PDF Author: Hadley Wickham
Publisher: Springer Science & Business Media
ISBN: 0387981411
Category : Computers
Languages : en
Pages : 211

Get Book Here

Book Description
Provides both rich theory and powerful applications Figures are accompanied by code required to produce them Full color figures

Discrete Data Analysis with R

Discrete Data Analysis with R PDF Author: Michael Friendly
Publisher: CRC Press
ISBN: 1498725864
Category : Mathematics
Languages : en
Pages : 700

Get Book Here

Book Description
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth

R for Data Science

R for Data Science PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521

Get Book Here

Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

R in Action

R in Action PDF Author: Robert Kabacoff
Publisher: Manning Publications
ISBN: 9781617291388
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
R is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data. R in Action, Second Edition is a language tutorial focused on practical problems. Written by a research methodologist, it takes a direct and modular approach to quickly give readers the information they need to produce useful results. Focusing on realistic data analyses and a comprehensive integration of graphics, it follows the steps that real data analysts use to acquire their data, get it into shape, analyze it, and produce meaningful results that they can provide to clients. Purchase of the print book comes with an offer of a free PDF eBook from Manning. Also available is all code from the book.

Graphical Methods for Data Analysis

Graphical Methods for Data Analysis PDF Author: J. M. Chambers
Publisher: CRC Press
ISBN: 135108920X
Category : Mathematics
Languages : en
Pages : 551

Get Book Here

Book Description
This book present graphical methods for analysing data. Some methods are new and some are old, some require a computer and others only paper and pencil; but they are all powerful data analysis tools. In many situations, a set of data even a large set- can be adequately analysed through graphical methods alone. In most other situations, a few well-chosen graphical displays can significantly enhance numerical statistical analyses.

Using R and RStudio for Data Management, Statistical Analysis, and Graphics

Using R and RStudio for Data Management, Statistical Analysis, and Graphics PDF Author: Nicholas J. Horton
Publisher: CRC Press
ISBN: 1482237377
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This book covers the aspects of R most often used by statistical analysts. Incorporating the use of RStudio and the latest R packages, this second edition offers new chapters on simulation, special topics, and case studies. It reorganizes and enhances the chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots. It also provides a detailed discussion of the philosophy and use of the knitr and markdown packages for R.

SAS and R

SAS and R PDF Author: Ken Kleinman
Publisher: CRC Press
ISBN: 1420070592
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
An All-in-One Resource for Using SAS and R to Carry out Common TasksProvides a path between languages that is easier than reading complete documentationSAS and R: Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in both SAS and R, without having to navigate through the extensive, id

Introduction to Data Analysis and Graphical Presentation in Biostatistics with R

Introduction to Data Analysis and Graphical Presentation in Biostatistics with R PDF Author: Thomas W. MacFarland
Publisher: Springer Science & Business Media
ISBN: 3319025325
Category : Medical
Languages : en
Pages : 172

Get Book Here

Book Description
Through real-world datasets, this book shows the reader how to work with material in biostatistics using the open source software R. These include tools that are critical to dealing with missing data, which is a pressing scientific issue for those engaged in biostatistics. Readers will be equipped to run analyses and make graphical presentations based on the sample dataset and their own data. The hands-on approach will benefit students and ensure the accessibility of this book for readers with a basic understanding of R. Topics include: an introduction to Biostatistics and R, data exploration, descriptive statistics and measures of central tendency, t-Test for independent samples, t-Test for matched pairs, ANOVA, correlation and linear regression, and advice for future work.