Author: Yao Ding
Publisher: Springer
ISBN: 9789819780082
Category : Computers
Languages : en
Pages : 0
Book Description
This book deals with hyperspectral image classification using graph neural network methods, focusing on classification model designing, graph information dissemination, and graph construction. In the book, various graph neural network based classifiers have been proposed for hyperspectral image classification to improve the classification accuracy. This book has promoted the application of graph neural network in hyperspectral image classification, providing reference for remote sensing image processing. It will be a useful reference for researchers in remote sensing image processing and image neural network design.
Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images
Author: Yao Ding
Publisher: Springer
ISBN: 9789819780082
Category : Computers
Languages : en
Pages : 0
Book Description
This book deals with hyperspectral image classification using graph neural network methods, focusing on classification model designing, graph information dissemination, and graph construction. In the book, various graph neural network based classifiers have been proposed for hyperspectral image classification to improve the classification accuracy. This book has promoted the application of graph neural network in hyperspectral image classification, providing reference for remote sensing image processing. It will be a useful reference for researchers in remote sensing image processing and image neural network design.
Publisher: Springer
ISBN: 9789819780082
Category : Computers
Languages : en
Pages : 0
Book Description
This book deals with hyperspectral image classification using graph neural network methods, focusing on classification model designing, graph information dissemination, and graph construction. In the book, various graph neural network based classifiers have been proposed for hyperspectral image classification to improve the classification accuracy. This book has promoted the application of graph neural network in hyperspectral image classification, providing reference for remote sensing image processing. It will be a useful reference for researchers in remote sensing image processing and image neural network design.
Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images
Author: Yao Ding
Publisher: Springer Nature
ISBN: 9819780098
Category :
Languages : en
Pages : 189
Book Description
Publisher: Springer Nature
ISBN: 9819780098
Category :
Languages : en
Pages : 189
Book Description
Hyperspectral Image Analysis
Author: Saurabh Prasad
Publisher: Springer Nature
ISBN: 3030386171
Category : Computers
Languages : en
Pages : 464
Book Description
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Publisher: Springer Nature
ISBN: 3030386171
Category : Computers
Languages : en
Pages : 464
Book Description
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Proceedings of the 4th International Conference on Advances in Computational Science and Engineering
Author: Vinesh Thiruchelvam
Publisher: Springer Nature
ISBN: 9819729777
Category :
Languages : en
Pages : 847
Book Description
Publisher: Springer Nature
ISBN: 9819729777
Category :
Languages : en
Pages : 847
Book Description
Advances in Brain Inspired Cognitive Systems
Author: Jinchang Ren
Publisher: Springer Nature
ISBN: 303039431X
Category : Computers
Languages : en
Pages : 606
Book Description
This book constitutes the refereed proceedings of the 10th International Conference on Advances in Brain Inspired Cognitive Systems, BICS 2019, held in Guangzhou, China, in July 2019. The 57 papers presented in this volume were carefully reviewed and selected from 129 submissions. The papers are organized in topical sections named: neural computation; biologically inspired systems; image recognition: detection, tracking and classification; and data analysis and natural language processing.
Publisher: Springer Nature
ISBN: 303039431X
Category : Computers
Languages : en
Pages : 606
Book Description
This book constitutes the refereed proceedings of the 10th International Conference on Advances in Brain Inspired Cognitive Systems, BICS 2019, held in Guangzhou, China, in July 2019. The 57 papers presented in this volume were carefully reviewed and selected from 129 submissions. The papers are organized in topical sections named: neural computation; biologically inspired systems; image recognition: detection, tracking and classification; and data analysis and natural language processing.
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Author: Taskin Kavzoglu
Publisher: MDPI
ISBN: 3039438271
Category : Science
Languages : en
Pages : 256
Book Description
Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.
Publisher: MDPI
ISBN: 3039438271
Category : Science
Languages : en
Pages : 256
Book Description
Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification.
Intelligent Interpretation for Geological Disasters
Author: Weitao Chen
Publisher: Springer Nature
ISBN: 9819958229
Category : Nature
Languages : en
Pages : 241
Book Description
This book comprehensively utilizes the new generation of artificial intelligence and remote sensing science and technology to systematically carry out researches on high-precision recognition, monitoring, analysis, and assessment of geological disasters by using different technologies of "ground, airspace, and space-based systems" and different scales of "target-semantic-region". The main contents include: 1) Intelligent interpretation theory and methods of geological disasters, 2) Intelligent analysis of landslide based on long-term ground monitoring data, 3) Intelligent analysis of landslide evolution based on optical satellite remote sensing data, 4) Deep learning-based remote sensing detection of landslide, 5) Intelligent assessment methods of landslide susceptibility, 6) Intelligent recognition of ground figure based on airspace-based remote sensing data. The book is of interest to graduate student, scientific, and technological personnel who work in the area of geological disasters, natural hazards, remote sensing, and artificial intelligence.
Publisher: Springer Nature
ISBN: 9819958229
Category : Nature
Languages : en
Pages : 241
Book Description
This book comprehensively utilizes the new generation of artificial intelligence and remote sensing science and technology to systematically carry out researches on high-precision recognition, monitoring, analysis, and assessment of geological disasters by using different technologies of "ground, airspace, and space-based systems" and different scales of "target-semantic-region". The main contents include: 1) Intelligent interpretation theory and methods of geological disasters, 2) Intelligent analysis of landslide based on long-term ground monitoring data, 3) Intelligent analysis of landslide evolution based on optical satellite remote sensing data, 4) Deep learning-based remote sensing detection of landslide, 5) Intelligent assessment methods of landslide susceptibility, 6) Intelligent recognition of ground figure based on airspace-based remote sensing data. The book is of interest to graduate student, scientific, and technological personnel who work in the area of geological disasters, natural hazards, remote sensing, and artificial intelligence.
A Selection of Image Understanding Techniques
Author: Yu-Jin Zhang
Publisher: CRC Press
ISBN: 1000827747
Category : Computers
Languages : en
Pages : 349
Book Description
This book offers a comprehensive introduction to seven commonly used image understanding techniques in modern information technology. Readers of various levels can find suitable techniques to solve their practical problems and discover the latest development in these specific domains. The techniques covered include camera model and calibration, stereo vision, generalized matching, scene analysis and semantic interpretation, multi-sensor image information fusion, content-based visual information retrieval, and understanding spatial-temporal behavior. The book provides aspects from the essential concepts overview and basic principles to detailed introduction, explanation of the current methods and their practical techniques. It also presents discussions on the research trends and latest results in conjunction with new development of technical methods. This is an excellent read for those who do not have a subject background in image technology but need to use these techniques to complete specific tasks. These essential information will also be useful for their further study in the relevant fields.
Publisher: CRC Press
ISBN: 1000827747
Category : Computers
Languages : en
Pages : 349
Book Description
This book offers a comprehensive introduction to seven commonly used image understanding techniques in modern information technology. Readers of various levels can find suitable techniques to solve their practical problems and discover the latest development in these specific domains. The techniques covered include camera model and calibration, stereo vision, generalized matching, scene analysis and semantic interpretation, multi-sensor image information fusion, content-based visual information retrieval, and understanding spatial-temporal behavior. The book provides aspects from the essential concepts overview and basic principles to detailed introduction, explanation of the current methods and their practical techniques. It also presents discussions on the research trends and latest results in conjunction with new development of technical methods. This is an excellent read for those who do not have a subject background in image technology but need to use these techniques to complete specific tasks. These essential information will also be useful for their further study in the relevant fields.
Recent Advances in Image Fusion and Quality Improvement for Cyber-Physical Systems
Author: Xin Jin
Publisher: Frontiers Media SA
ISBN: 2832524591
Category : Science
Languages : en
Pages : 180
Book Description
Publisher: Frontiers Media SA
ISBN: 2832524591
Category : Science
Languages : en
Pages : 180
Book Description
Intelligence Science IV
Author: Zhongzhi Shi
Publisher: Springer Nature
ISBN: 3031149033
Category : Computers
Languages : en
Pages : 481
Book Description
This book constitutes the refereed proceedings of the 5th International Conference on Intelligence Science, ICIS 2022, held in Xi'an, China, in August 2022. The 41 full and 5 short papers presented in this book were carefully reviewed and selected from 85 submissions. They were organized in topical sections as follows: Brain cognition; machine learning; data intelligence; language cognition; remote sensing images; perceptual intelligence; wireless sensor; and medical artificial intelligence.
Publisher: Springer Nature
ISBN: 3031149033
Category : Computers
Languages : en
Pages : 481
Book Description
This book constitutes the refereed proceedings of the 5th International Conference on Intelligence Science, ICIS 2022, held in Xi'an, China, in August 2022. The 41 full and 5 short papers presented in this book were carefully reviewed and selected from 85 submissions. They were organized in topical sections as follows: Brain cognition; machine learning; data intelligence; language cognition; remote sensing images; perceptual intelligence; wireless sensor; and medical artificial intelligence.