Author: Yun Fu
Publisher: Springer Science & Business Media
ISBN: 1461444578
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Graph Embedding for Pattern Analysis
Author: Yun Fu
Publisher: Springer Science & Business Media
ISBN: 1461444578
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Publisher: Springer Science & Business Media
ISBN: 1461444578
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Graph Representation Learning
Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141
Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141
Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Advances in Intelligent Data Analysis XVIII
Author: Michael R. Berthold
Publisher: Springer
ISBN: 9783030445836
Category : Computers
Languages : en
Pages : 588
Book Description
This open access book constitutes the proceedings of the 18th International Conference on Intelligent Data Analysis, IDA 2020, held in Konstanz, Germany, in April 2020. The 45 full papers presented in this volume were carefully reviewed and selected from 114 submissions. Advancing Intelligent Data Analysis requires novel, potentially game-changing ideas. IDA’s mission is to promote ideas over performance: a solid motivation can be as convincing as exhaustive empirical evaluation.
Publisher: Springer
ISBN: 9783030445836
Category : Computers
Languages : en
Pages : 588
Book Description
This open access book constitutes the proceedings of the 18th International Conference on Intelligent Data Analysis, IDA 2020, held in Konstanz, Germany, in April 2020. The 45 full papers presented in this volume were carefully reviewed and selected from 114 submissions. Advancing Intelligent Data Analysis requires novel, potentially game-changing ideas. IDA’s mission is to promote ideas over performance: a solid motivation can be as convincing as exhaustive empirical evaluation.
Graph Classification and Clustering Based on Vector Space Embedding
Author: Kaspar Riesen
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814304719
Category : Computers
Languages : en
Pages : 331
Book Description
This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector. This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time.
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814304719
Category : Computers
Languages : en
Pages : 331
Book Description
This book is concerned with a fundamentally novel approach to graph-based pattern recognition based on vector space embedding of graphs. It aims at condensing the high representational power of graphs into a computationally efficient and mathematically convenient feature vector. This volume utilizes the dissimilarity space representation originally proposed by Duin and Pekalska to embed graphs in real vector spaces. Such an embedding gives one access to all algorithms developed in the past for feature vectors, which has been the predominant representation formalism in pattern recognition and related areas for a long time.
Deep Learning on Graphs
Author: Yao Ma
Publisher: Cambridge University Press
ISBN: 1108831745
Category : Computers
Languages : en
Pages : 339
Book Description
A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.
Publisher: Cambridge University Press
ISBN: 1108831745
Category : Computers
Languages : en
Pages : 339
Book Description
A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.
Graph Machine Learning
Author: Claudio Stamile
Publisher: Packt Publishing Ltd
ISBN: 1800206755
Category : Computers
Languages : en
Pages : 338
Book Description
Build machine learning algorithms using graph data and efficiently exploit topological information within your models Key Features Implement machine learning techniques and algorithms in graph data Identify the relationship between nodes in order to make better business decisions Apply graph-based machine learning methods to solve real-life problems Book Description Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications. What you will learn Write Python scripts to extract features from graphs Distinguish between the main graph representation learning techniques Learn how to extract data from social networks, financial transaction systems, for text analysis, and more Implement the main unsupervised and supervised graph embedding techniques Get to grips with shallow embedding methods, graph neural networks, graph regularization methods, and more Deploy and scale out your application seamlessly Who this book is for This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1800206755
Category : Computers
Languages : en
Pages : 338
Book Description
Build machine learning algorithms using graph data and efficiently exploit topological information within your models Key Features Implement machine learning techniques and algorithms in graph data Identify the relationship between nodes in order to make better business decisions Apply graph-based machine learning methods to solve real-life problems Book Description Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications. What you will learn Write Python scripts to extract features from graphs Distinguish between the main graph representation learning techniques Learn how to extract data from social networks, financial transaction systems, for text analysis, and more Implement the main unsupervised and supervised graph embedding techniques Get to grips with shallow embedding methods, graph neural networks, graph regularization methods, and more Deploy and scale out your application seamlessly Who this book is for This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.
Knowledge Graphs
Author: Aidan Hogan
Publisher: Morgan & Claypool Publishers
ISBN: 1636392369
Category : Computers
Languages : en
Pages : 257
Book Description
This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
Publisher: Morgan & Claypool Publishers
ISBN: 1636392369
Category : Computers
Languages : en
Pages : 257
Book Description
This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
Graph-Based Methods in Computer Vision: Developments and Applications
Author: Bai, Xiao
Publisher: IGI Global
ISBN: 1466618922
Category : Computers
Languages : en
Pages : 395
Book Description
Computer vision, the science and technology of machines that see, has been a rapidly developing research area since the mid-1970s. It focuses on the understanding of digital input images in many forms, including video and 3-D range data. Graph-Based Methods in Computer Vision: Developments and Applications presents a sampling of the research issues related to applying graph-based methods in computer vision. These methods have been under-utilized in the past, but use must now be increased because of their ability to naturally and effectively represent image models and data. This publication explores current activity and future applications of this fascinating and ground-breaking topic.
Publisher: IGI Global
ISBN: 1466618922
Category : Computers
Languages : en
Pages : 395
Book Description
Computer vision, the science and technology of machines that see, has been a rapidly developing research area since the mid-1970s. It focuses on the understanding of digital input images in many forms, including video and 3-D range data. Graph-Based Methods in Computer Vision: Developments and Applications presents a sampling of the research issues related to applying graph-based methods in computer vision. These methods have been under-utilized in the past, but use must now be increased because of their ability to naturally and effectively represent image models and data. This publication explores current activity and future applications of this fascinating and ground-breaking topic.
Image Processing and Analysis with Graphs
Author: Olivier Lezoray
Publisher: CRC Press
ISBN: 1439855080
Category : Computers
Languages : en
Pages : 562
Book Description
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.
Publisher: CRC Press
ISBN: 1439855080
Category : Computers
Languages : en
Pages : 562
Book Description
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.
Graph-Based Representations in Pattern Recognition
Author: Xiaoyi Jiang
Publisher: Springer Science & Business Media
ISBN: 3642208436
Category : Computers
Languages : en
Pages : 355
Book Description
This book constitutes the refereed proceedings of the 8th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2011, held in Münster, Germany, in May 2011. The 34 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on graph-based representation and characterization, graph matching, classification, and querying, graph-based learning, graph-based segmentation, and applications.
Publisher: Springer Science & Business Media
ISBN: 3642208436
Category : Computers
Languages : en
Pages : 355
Book Description
This book constitutes the refereed proceedings of the 8th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2011, held in Münster, Germany, in May 2011. The 34 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on graph-based representation and characterization, graph matching, classification, and querying, graph-based learning, graph-based segmentation, and applications.