Granular Neural Networks, Pattern Recognition and Bioinformatics

Granular Neural Networks, Pattern Recognition and Bioinformatics PDF Author: Sankar K. Pal
Publisher: Springer
ISBN: 331957115X
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.

Granular Neural Networks, Pattern Recognition and Bioinformatics

Granular Neural Networks, Pattern Recognition and Bioinformatics PDF Author: Sankar K. Pal
Publisher: Springer
ISBN: 331957115X
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.

Rough-Fuzzy Pattern Recognition

Rough-Fuzzy Pattern Recognition PDF Author: Pradipta Maji
Publisher: John Wiley & Sons
ISBN: 111800440X
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.

Computational Intelligence for Pattern Recognition

Computational Intelligence for Pattern Recognition PDF Author: Witold Pedrycz
Publisher: Springer
ISBN: 3319896296
Category : Technology & Engineering
Languages : en
Pages : 431

Get Book Here

Book Description
The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition.

Pattern Recognition And Big Data

Pattern Recognition And Big Data PDF Author: Sankar Kumar Pal
Publisher: World Scientific
ISBN: 9813144564
Category : Computers
Languages : en
Pages : 875

Get Book Here

Book Description
Containing twenty six contributions by experts from all over the world, this book presents both research and review material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, linguistic, fuzzy-set-theoretic, neural, evolutionary computing and rough-set-theoretic to hybrid soft computing, with significant real-life applications.Pattern Recognition and Big Data provides state-of-the-art classical and modern approaches to pattern recognition and mining, with extensive real life applications. The book describes efficient soft and robust machine learning algorithms and granular computing techniques for data mining and knowledge discovery; and the issues associated with handling Big Data. Application domains considered include bioinformatics, cognitive machines (or machine mind developments), biometrics, computer vision, the e-nose, remote sensing and social network analysis.

Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition PDF Author: Christopher M. Bishop
Publisher: Oxford University Press
ISBN: 0198538642
Category : Computers
Languages : en
Pages : 501

Get Book Here

Book Description
Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.

Granular, Fuzzy, and Soft Computing

Granular, Fuzzy, and Soft Computing PDF Author: Tsau-Young Lin
Publisher: Springer Nature
ISBN: 1071626280
Category : Mathematics
Languages : en
Pages : 936

Get Book Here

Book Description
The first edition of the Encyclopedia of Complexity and Systems Science (ECSS, 2009) presented a comprehensive overview of granular computing (GrC) broadly divided into several categories: Granular computing from rough set theory, Granular Computing in Database Theory, Granular Computing in Social Networks, Granular Computing and Fuzzy Set Theory, Grid/Cloud Computing, as well as general issues in granular computing. In 2011, the formal theory of GrC was established, providing an adequate infrastructure to support revolutionary new approaches to computer/data science, including the challenges presented by so-called big data. For this volume of ECSS, Second Edition, many entries have been updated to capture these new developments, together with new chapters on such topics as data clustering, outliers in data mining, qualitative fuzzy sets, and information flow analysis for security applications. Granulations can be seen as a natural and ancient methodology deeply rooted in the human mind. Many daily "things" are routinely granulated into sub "things": The topography of earth is granulated into hills, plateaus, etc., space and time are granulated into infinitesimal granules, and a circle is granulated into polygons of infinitesimal sides. Such granules led to the invention of calculus, topology and non-standard analysis. Formalization of general granulation was difficult but, as shown in this volume, great progress has been made in combing discrete and continuous mathematics under one roof for a broad range of applications in data science.

Granular Computing: At the Junction of Rough Sets and Fuzzy Sets

Granular Computing: At the Junction of Rough Sets and Fuzzy Sets PDF Author: Rafael Bello
Publisher: Springer Science & Business Media
ISBN: 3540769722
Category : Computers
Languages : en
Pages : 339

Get Book Here

Book Description
Since their very inception, both fuzzy and rough set theories have earned a sound, well-deserved reputation owing to their intrinsic capabilities to model uncertainty coming from the real world. The increasing amount of investigations on both subjects reported every year in the literature vouches for the dynamics of the area and its rapid advancements. In the last few years the widespread utilization of fuzzy and rough sets as granulation sources has contributed to lay both methodologies in a privileged position within Granular Computing, thus giving rise to a sort a modeling which is far closer to the way human beings perceive their environment – via granulated knowledge. This volume is a compilation of the best papers presented at the First International Symposium on Fuzzy and Rough Sets (ISFUROS 2006) held in Santa Clara, Cuba. You will therefore find valuable contributions both in the theoretical field as in several application domains such as intelligent control, data analysis, decision making and machine learning, just to name a few. Together, they will catch you up with the huge potential of the aforementioned methodologies.

Information Granularity, Big Data, and Computational Intelligence

Information Granularity, Big Data, and Computational Intelligence PDF Author: Witold Pedrycz
Publisher: Springer
ISBN: 331908254X
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book Here

Book Description
The recent pursuits emerging in the realm of big data processing, interpretation, collection and organization have emerged in numerous sectors including business, industry and government organizations. Data sets such as customer transactions for a mega-retailer, weather monitoring, intelligence gathering, quickly outpace the capacities of traditional techniques and tools of data analysis. The 3V (volume, variability and velocity) challenges led to the emergence of new techniques and tools in data visualization, acquisition, and serialization. Soft Computing being regarded as a plethora of technologies of fuzzy sets (or Granular Computing), neurocomputing and evolutionary optimization brings forward a number of unique features that might be instrumental to the development of concepts and algorithms to deal with big data. This carefully edited volume provides the reader with an updated, in-depth material on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligence in the realization of concepts and implementation of big data architectures, analysis, and interpretation as well as data analytics. The book is aimed at a broad audience of researchers and practitioners including those active in various disciplines in which big data, their analysis and optimization are of genuine relevance. One focal point is the systematic exposure of the concepts, design methodology, and detailed algorithms. In general, the volume adheres to the top-down strategy starting with the concepts and motivation and then proceeding with the detailed design that materializes in specific algorithms and representative applications. The material is self-contained and provides the reader with all necessary prerequisites and augments some parts with a step-by-step explanation of more advanced concepts supported by a significant amount of illustrative numeric material and some application scenarios to motivate the reader and make some abstract concepts more tangible.

Soft Computing Approach to Pattern Recognition and Image Processing

Soft Computing Approach to Pattern Recognition and Image Processing PDF Author: Ashish Ghosh
Publisher: World Scientific
ISBN: 9789812776235
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
This volume provides a collection of sixteen articles containing review and new material. In a unified way, they describe the recent development of theories and methodologies in pattern recognition, image processing and vision using fuzzy logic, artificial neural networks, genetic algorithms, rough sets and wavelets with significant real life applications. The book details the theory of granular computing and the role of a rough-neuro approach as a way of computing with words and designing intelligent recognition systems. It also demonstrates applications of the soft computing paradigm to case based reasoning, data mining and bio-informatics with a scope for future research. The contributors from around the world present a balanced mixture of current theory, algorithms and applications, making the book an extremely useful resource for students and researchers alike. Contents: Pattern Recognition: Multiple Classifier Systems; Building Decision Trees from the Fourier Spectrum of a Tree Ensemble; Clustering Large Data Sets; Multi-objective Variable String Genetic Classifier: Application to Remote Sensing Imagery; Image Processing and Vision: Dissimilarity Measures Between Fuzzy Sets or Fuzzy Structures; Early Vision: Concepts and Algorithms; Self-organizing Neural Network for Multi-level Image Segmentation; Geometric Transformation by Moment Method with Wavelet Matrix; New Computationally Efficient Algorithms for Video Coding; Soft Computing for Computational Media Aesthetics: Analyzing Video Content for Meaning; Granular Computing and Case Based Reasoning: Towards Granular Multi-agent Systems; Granular Computing and Pattern Recognition; Case Base Maintenance: A Soft Computing Perspective; Real Life Applications: Autoassociative Neural Network Models for Pattern Recognition Tasks in Speech and Image; Protein Structure Prediction Using Soft Computing; Pattern Classification for Biological Data Mining. Readership: Upper level undergraduates, graduates, researchers, academics and industrialists.

Human-Centric Information Processing Through Granular Modelling

Human-Centric Information Processing Through Granular Modelling PDF Author: Andrzej Bargiela
Publisher: Springer
ISBN: 3540929169
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
Information granules and their processing permeate a way in which we perceive the world, carryout processing at the conceptual (abstract) level, and communicate our findings to the surrounding environment. The importance of information granulation becomes even more apparent when we are faced with a rapidly growing flood of data, become challenged to make decisions in complex data settings and are required to appreciate the context from which the data is derived. Human centricity of systems that claim to be “intelligent” and the granular computing come hand in hand. It is not surprising at all to witness that the paradigm of Granular Computing has started to gain visibility and continues along this path by gathering interest from the circles of academics and practitioners. It is quite remarkable that the spectrum of application and research areas that have adopted information granulation as a successful strategy for dealing with information complexity covers such diverse fields as bioinformatics, image understanding, environmental monitoring, urban sustainability, to mention few most visible in the literature. Undoubtedly, there are two important aspects of Granular Computing that are worth stressing. First, there are several formalisms in which information granules are articulated so be intervals (sets), fuzzy sets, rough sets, soft sets, approximate sets, near sets and alike. They are complementary and each of them offers some interesting views at the complexity of the world and cyberspace.