Graded Algebras in Algebraic Geometry

Graded Algebras in Algebraic Geometry PDF Author: Aron Simis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110637758
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
The objective of this book is to look at certain commutative graded algebras that appear frequently in algebraic geometry. By studying classical constructions from geometry from the point of view of modern commutative algebra, this carefully-written book is a valuable source of information, offering a careful algebraic systematization and treatment of the problems at hand, and contributing to the study of the original geometric questions. In greater detail, the material covers aspects of rational maps (graph, degree, birationality, specialization, combinatorics), Cremona transformations, polar maps, Gauss maps, the geometry of Fitting ideals, tangent varieties, joins and secants, Aluffi algebras. The book includes sections of exercises to help put in practice the theoretic material instead of the mere complementary additions to the theory.

Graded Algebras in Algebraic Geometry

Graded Algebras in Algebraic Geometry PDF Author: Aron Simis
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110637758
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
The objective of this book is to look at certain commutative graded algebras that appear frequently in algebraic geometry. By studying classical constructions from geometry from the point of view of modern commutative algebra, this carefully-written book is a valuable source of information, offering a careful algebraic systematization and treatment of the problems at hand, and contributing to the study of the original geometric questions. In greater detail, the material covers aspects of rational maps (graph, degree, birationality, specialization, combinatorics), Cremona transformations, polar maps, Gauss maps, the geometry of Fitting ideals, tangent varieties, joins and secants, Aluffi algebras. The book includes sections of exercises to help put in practice the theoretic material instead of the mere complementary additions to the theory.

Commutative Algebra

Commutative Algebra PDF Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784

Get Book Here

Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Connections Between Algebra, Combinatorics, and Geometry

Connections Between Algebra, Combinatorics, and Geometry PDF Author: Susan M. Cooper
Publisher: Springer
ISBN: 1493906267
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection.

Noncommutative Algebraic Geometry and Representations of Quantized Algebras

Noncommutative Algebraic Geometry and Representations of Quantized Algebras PDF Author: A. Rosenberg
Publisher: Springer Science & Business Media
ISBN: 9401584303
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
This book is based on lectures delivered at Harvard in the Spring of 1991 and at the University of Utah during the academic year 1992-93. Formally, the book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose of what follows is to explain the spirit of the book and how different parts are linked together without entering into details. The point of departure is the notion of the left spectrum of an associative ring, and the first natural steps of general theory of noncommutative affine, quasi-affine, and projective schemes. This material is presented in Chapter I. Further developments originated from the requirements of several important examples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern mathematical physics. The dasses of rings we consider indude as special cases: quantum plane, algebra of q-differential operators, (quantum) Heisenberg and Weyl algebras, (quantum) enveloping algebra ofthe Lie algebra sl(2) , coordinate algebra of the quantum group SL(2), the twisted SL(2) of Woronowicz, so called dispin algebra and many others.

Commutative Algebra and Algebraic Geometry

Commutative Algebra and Algebraic Geometry PDF Author: Sudhir Ghorpade
Publisher: American Mathematical Soc.
ISBN: 9780821857229
Category : Mathematics
Languages : en
Pages : 196

Get Book Here

Book Description
The first Joint AMS-India Mathematics Meeting was held in Bangalore (India). This book presents articles written by speakers from a special session on commutative algebra and algebraic geometry. Included are contributions from some leading researchers around the world in this subject area. The volume contains new and original research papers and survey articles suitable for graduate students and researchers interested in commutative algebra and algebraic geometry.

Algebraic Operads

Algebraic Operads PDF Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 3642303625
Category : Mathematics
Languages : en
Pages : 649

Get Book Here

Book Description
In many areas of mathematics some “higher operations” are arising. These havebecome so important that several research projects refer to such expressions. Higher operationsform new types of algebras. The key to understanding and comparing them, to creating invariants of their action is operad theory. This is a point of view that is 40 years old in algebraic topology, but the new trend is its appearance in several other areas, such as algebraic geometry, mathematical physics, differential geometry, and combinatorics. The present volume is the first comprehensive and systematic approach to algebraic operads. An operad is an algebraic device that serves to study all kinds of algebras (associative, commutative, Lie, Poisson, A-infinity, etc.) from a conceptual point of view. The book presents this topic with an emphasis on Koszul duality theory. After a modern treatment of Koszul duality for associative algebras, the theory is extended to operads. Applications to homotopy algebra are given, for instance the Homotopy Transfer Theorem. Although the necessary notions of algebra are recalled, readers are expected to be familiar with elementary homological algebra. Each chapter ends with a helpful summary and exercises. A full chapter is devoted to examples, and numerous figures are included. After a low-level chapter on Algebra, accessible to (advanced) undergraduate students, the level increases gradually through the book. However, the authors have done their best to make it suitable for graduate students: three appendices review the basic results needed in order to understand the various chapters. Since higher algebra is becoming essential in several research areas like deformation theory, algebraic geometry, representation theory, differential geometry, algebraic combinatorics, and mathematical physics, the book can also be used as a reference work by researchers.

Algebraic Geometry

Algebraic Geometry PDF Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511

Get Book Here

Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Geometry of Lie Groups

Geometry of Lie Groups PDF Author: B. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 9780792343905
Category : Mathematics
Languages : ja
Pages : 424

Get Book Here

Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.

Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra PDF Author: Hiroaki Hijikata
Publisher: Academic Press
ISBN: 1483265188
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from power series rings and rings of invariants of finite linear groups to the convolution algebra of distributions on totally disconnected locally compact groups. The discussion begins with a description of several formulas for enumerating certain types of objects, which may be tabular arrangements of integers called Young tableaux or some types of monomials. The next chapter explains how to establish these enumerative formulas, with emphasis on the role played by transformations of determinantal polynomials and recurrence relations satisfied by them. The book then turns to several applications of the enumerative formulas and universal identity, including including enumerative proofs of the straightening law of Doubilet-Rota-Stein and computations of Hilbert functions of polynomial ideals of certain determinantal loci. Invariant differentials and quaternion extensions are also examined, along with the moduli of Todorov surfaces and the classification problem of embedded lines in characteristic p. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.

Modules Over Operads and Functors

Modules Over Operads and Functors PDF Author: Benoit Fresse
Publisher: Springer Science & Business Media
ISBN: 3540890556
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
The notion of an operad supplies both a conceptual and effective device to handle a variety of algebraic structures in various situations. Operads were introduced 40 years ago in algebraic topology in order to model the structure of iterated loop spaces. Since then, operads have been used fruitfully in many fields of mathematics and physics. This monograph begins with a review of the basis of operad theory. The main purpose is to study structures of modules over operads as a new device to model functors between categories of algebras as effectively as operads model categories of algebras.