Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data

Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data PDF Author: Cristian Gavrus
Publisher: American Mathematical Soc.
ISBN: 147044111X
Category : Education
Languages : en
Pages : 106

Get Book Here

Book Description
In this paper, the authors prove global well-posedness of the massless Maxwell–Dirac equation in the Coulomb gauge on R1+d(d≥4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell–Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell–Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell–Dirac takes essentially the same form as Maxwell-Klein-Gordon.

Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data

Global Well-Posedness of High Dimensional Maxwell–Dirac for Small Critical Data PDF Author: Cristian Gavrus
Publisher: American Mathematical Soc.
ISBN: 147044111X
Category : Education
Languages : en
Pages : 106

Get Book Here

Book Description
In this paper, the authors prove global well-posedness of the massless Maxwell–Dirac equation in the Coulomb gauge on R1+d(d≥4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell–Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell–Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell–Dirac takes essentially the same form as Maxwell-Klein-Gordon.

Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data

Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data PDF Author: Cristian Dan Gavrus
Publisher:
ISBN: 9781470458089
Category : Differential equations, Partial
Languages : en
Pages : 94

Get Book Here

Book Description
In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on \mathbb{R}^{1+d} (d\geq 4) for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Kri.

Double Affine Hecke Algebras and Congruence Groups

Double Affine Hecke Algebras and Congruence Groups PDF Author: Bogdan Ion
Publisher: American Mathematical Soc.
ISBN: 1470443260
Category : Education
Languages : en
Pages : 90

Get Book Here

Book Description
The most general construction of double affine Artin groups (DAAG) and Hecke algebras (DAHA) associates such objects to pairs of compatible reductive group data. We show that DAAG/DAHA always admit a faithful action by auto-morphisms of a finite index subgroup of the Artin group of type A2, which descends to a faithful outer action of a congruence subgroup of SL(2, Z)or PSL(2, Z). This was previously known only in some special cases and, to the best of our knowledge, not even conjectured to hold in full generality. It turns out that the structural intricacies of DAAG/DAHA are captured by the underlying semisimple data and, to a large extent, even by adjoint data; we prove our main result by reduction to the adjoint case. Adjoint DAAG/DAHA correspond in a natural way to affine Lie algebras, or more precisely to their affinized Weyl groups, which are the semi-direct products W 􀀁 Q∨ of the Weyl group W with the coroot lattice Q∨. They were defined topologically by van der Lek, and independently, algebraically, by Cherednik. We now describe our results for the adjoint case in greater detail. We first give a new Coxeter-type presentation for adjoint DAAG as quotients of the Coxeter braid groups associated to certain crystallographic diagrams that we call double affine Coxeter diagrams. As a consequence we show that the rank two Artin groups of type A2,B2,G2 act by automorphisms on the adjoint DAAG/DAHA associated to affine Lie algebras of twist number r =1, 2, 3, respec-tively. This extends a fundamental result of Cherednik for r =1. We show further that the above rank two Artin group action descends to an outer action of the congruence subgroup Γ1(r). In particular, Γ1(r) acts naturally on the set of isomorphism classes of representations of an adjoint DAAG/DAHA of twist number r, giving rise to a projective representation of Γ1(r)on the spaceof aΓ1(r)-stable representation. We also provide a classification of the involutions of Kazhdan-Lusztig type that appear in the context of these actions.

Conformal Symmetry Breaking Differential Operators on Differential Forms

Conformal Symmetry Breaking Differential Operators on Differential Forms PDF Author: Matthias Fischmann
Publisher: American Mathematical Soc.
ISBN: 1470443244
Category : Education
Languages : en
Pages : 112

Get Book Here

Book Description
We study conformal symmetry breaking differential operators which map dif-ferential forms on Rn to differential forms on a codimension one subspace Rn−1. These operators are equivariant with respect to the conformal Lie algebra of the subspace Rn−1. They correspond to homomorphisms of generalized Verma mod-ules for so(n, 1) into generalized Verma modules for so(n+1, 1) both being induced from fundamental form representations of a parabolic subalgebra. We apply the F -method to derive explicit formulas for such homomorphisms. In particular, we find explicit formulas for the generators of the intertwining operators of the re-lated branching problems restricting generalized Verma modules for so(n +1, 1) to so(n, 1). As consequences, we derive closed formulas for all conformal symmetry breaking differential operators in terms of the first-order operators d, δ, d¯ and δ¯ and certain hypergeometric polynomials. A dominant role in these studies is played by two infinite sequences of symmetry breaking differential operators which depend on a complex parameter λ. Their values at special values of λ appear as factors in two systems of factorization identities which involve the Branson-Gover opera- tors of the Euclidean metrics on Rn and Rn−1 and the operators d, δ, d¯ and δ¯ as factors, respectively. Moreover, they naturally recover the gauge companion and Q-curvature operators of the Euclidean metric on the subspace Rn−1, respectively.

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case PDF Author: Jacob Bedrossian
Publisher: American Mathematical Soc.
ISBN: 1470442175
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.

Conformal Graph Directed Markov Systems on Carnot Groups

Conformal Graph Directed Markov Systems on Carnot Groups PDF Author: Vasileios Chousionis
Publisher: American Mathematical Soc.
ISBN: 1470442159
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.

Filtrations and Buildings

Filtrations and Buildings PDF Author: Christophe Cornut
Publisher: American Mathematical Soc.
ISBN: 1470442213
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
The author constructs and studies a scheme theoretical version of the Tits vectorial building, relates it to filtrations on fiber functors, and uses them to clarify various constructions pertaining to affine Bruhat-Tits buildings, for which he also provides a Tannakian description.

Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary

Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary PDF Author: Chao Wang
Publisher: American Mathematical Soc.
ISBN: 1470446898
Category : Education
Languages : en
Pages : 119

Get Book Here

Book Description
In this paper, we prove the local well-posedness of the free boundary problem for the incompressible Euler equations in low regularity Sobolev spaces, in which the velocity is a Lipschitz function and the free surface belongs to C 3 2 +ε. Moreover, we also present a Beale-Kato-Majda type break-down criterion of smooth solution in terms of the mean curvature of the free surface, the gradient of the velocity and Taylor sign condition.

Explicit Arithmetic of Jacobians of Generalized Legendre Curves Over Global Function Fields

Explicit Arithmetic of Jacobians of Generalized Legendre Curves Over Global Function Fields PDF Author: Lisa Berger
Publisher: American Mathematical Soc.
ISBN: 1470442191
Category : Mathematics
Languages : en
Pages : 144

Get Book Here

Book Description
The authors study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^r-1(x + 1)(x + t)$ over the function field $mathbb F_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$ and $d$ is a positive integer, the authors compute the $L$-function of $J$ over $mathbb F_q(t^1/d)$ and show that the Birch and Swinnerton-Dyer conjecture holds for $J$ over $mathbb F_q(t^1/d)$.

Theory of Fundamental Bessel Functions of High Rank

Theory of Fundamental Bessel Functions of High Rank PDF Author: Zhi Qi
Publisher: American Mathematical Society
ISBN: 1470443252
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
In this article, the author studies fundamental Bessel functions for $mathrm{GL}_n(mathbb F)$ arising from the Voronoí summation formula for any rank $n$ and field $mathbb F = mathbb R$ or $mathbb C$, with focus on developing their analytic and asymptotic theory. The main implements and subjects of this study of fundamental Bessel functions are their formal integral representations and Bessel differential equations. The author proves the asymptotic formulae for fundamental Bessel functions and explicit connection formulae for the Bessel differential equations.